These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 25257959)

  • 21. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cubic Silver Nanoparticles Fixed on TiO
    Ambroziak R; Hołdyński M; Płociński T; Pisarek M; Kudelski A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31623068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit.
    Fan M; Brolo AG
    Phys Chem Chem Phys; 2009 Sep; 11(34):7381-9. PubMed ID: 19690709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection.
    Pandey P; Seo MK; Shin KH; Lee YW; Sohn JI
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering.
    Lee JP; Chen D; Li X; Yoo S; Bottomley LA; El-Sayed MA; Park S; Liu M
    Nanoscale; 2013 Dec; 5(23):11620-4. PubMed ID: 24126702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-Ag Hybrids on Laser-Textured Si Surface for SERS Detection.
    Zhang C; Lin K; Huang Y; Zhang J
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-enhanced Raman nanodomes.
    Choi CJ; Xu Z; Wu HY; Liu GL; Cunningham BT
    Nanotechnology; 2010 Oct; 21(41):415301. PubMed ID: 20834120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA-mediated wirelike clusters of silver nanoparticles: an ultrasensitive SERS substrate.
    Majumdar D; Singha A; Mondal PK; Kundu S
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7798-807. PubMed ID: 23895297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-lithographic SERS substrates: tailoring surface chemistry for Au nanoparticle cluster assembly.
    Adams SM; Campione S; Caldwell JD; Bezares FJ; Culbertson JC; Capolino F; Ragan R
    Small; 2012 Jul; 8(14):2239-49. PubMed ID: 22528745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy.
    Liu F; Cao Z; Tang C; Chen L; Wang Z
    ACS Nano; 2010 May; 4(5):2643-8. PubMed ID: 20433194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing.
    Camden JP; Dieringer JA; Zhao J; Van Duyne RP
    Acc Chem Res; 2008 Dec; 41(12):1653-61. PubMed ID: 18630932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy.
    Cui L; Chen P; Chen S; Yuan Z; Yu C; Ren B; Zhang K
    Anal Chem; 2013 Jun; 85(11):5436-43. PubMed ID: 23656550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface-Enhanced Raman Spectroscopy Based on a Silver-Film Semi-Coated Nanosphere Array.
    Zhang W; Xue T; Zhang L; Lu F; Liu M; Meng C; Mao D; Mei T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering.
    Mu C; Zhang JP; Xu D
    Nanotechnology; 2010 Jan; 21(1):015604. PubMed ID: 19946166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering.
    Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P
    Nanotechnology; 2016 Dec; 27(49):495402. PubMed ID: 27827351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.