These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 25258020)

  • 1. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose.
    Park SJ; Jang YA; Noh W; Oh YH; Lee H; David Y; Baylon MG; Shin J; Yang JE; Choi SY; Lee SH; Lee SY
    Biotechnol Bioeng; 2015 Mar; 112(3):638-43. PubMed ID: 25258020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains.
    Sohn YJ; Kim HT; Baritugo KA; Song HM; Ryu MH; Kang KH; Jo SY; Kim H; Kim YJ; Choi JI; Park SK; Joo JC; Park SJ
    Int J Biol Macromol; 2020 Apr; 149():593-599. PubMed ID: 32001289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli.
    Park SJ; Lee TW; Lim SC; Kim TW; Lee H; Kim MK; Lee SH; Song BK; Lee SY
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):273-83. PubMed ID: 21842437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates.
    Park SJ; Jang YA; Lee H; Park AR; Yang JE; Shin J; Oh YH; Song BK; Jegal J; Lee SH; Lee SY
    Metab Eng; 2013 Nov; 20():20-8. PubMed ID: 23973656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution.
    Oh YH; Lee SH; Jang YA; Choi JW; Hong KS; Yu JH; Shin J; Song BK; Mastan SG; David Y; Baylon MG; Lee SY; Park SJ
    Bioresour Technol; 2015 Apr; 181():283-90. PubMed ID: 25661307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of glycerol utilization ability of Ralstonia eutropha H16 for production of polyhydroxyalkanoates.
    Fukui T; Mukoyama M; Orita I; Nakamura S
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7559-68. PubMed ID: 24878751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli.
    Park SJ; Kang KH; Lee H; Park AR; Yang JE; Oh YH; Song BK; Jegal J; Lee SH; Lee SY
    J Biotechnol; 2013 May; 165(2):93-8. PubMed ID: 23524059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli.
    David Y; Joo JC; Yang JE; Oh YH; Lee SY; Park SJ
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28862377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W.
    Arikawa H; Matsumoto K; Fujiki T
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7497-7507. PubMed ID: 28889198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Yang JE; Choi YJ; Lee SJ; Kang KH; Lee H; Oh YH; Lee SH; Park SJ; Lee SY
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):95-104. PubMed ID: 24113828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha.
    Insomphun C; Xie H; Mifune J; Kawashima Y; Orita I; Nakamura S; Fukui T
    Metab Eng; 2015 Jan; 27():38-45. PubMed ID: 25446974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil.
    Park DH; Kim BS
    N Biotechnol; 2011 Oct; 28(6):719-24. PubMed ID: 21333767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli.
    Yang JE; Kim JW; Oh YH; Choi SY; Lee H; Park AR; Shin J; Park SJ; Lee SY
    Biotechnol J; 2016 Dec; 11(12):1572-1585. PubMed ID: 27600064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha.
    Jeon JM; Brigham CJ; Kim YH; Kim HJ; Yi DH; Kim H; Rha C; Sinskey AJ; Yang YH
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5461-9. PubMed ID: 24615385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (R/S)-lactate/2-hydroxybutyrate dehydrogenases in and biosynthesis of block copolyesters by Ralstonia eutropha.
    Ishihara S; Orita I; Matsumoto K; Fukui T
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7557-7569. PubMed ID: 37773219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose.
    Zhang YZ; Liu GM; Weng WQ; Ding JY; Liu SJ
    J Biotechnol; 2015 Feb; 195():82-8. PubMed ID: 25541463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Steinbüchel A
    FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ralstonia eutropha H16 in progress: Applications beside PHAs and establishment as production platform by advanced genetic tools.
    Raberg M; Volodina E; Lin K; Steinbüchel A
    Crit Rev Biotechnol; 2018 Jun; 38(4):494-510. PubMed ID: 29233025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Engineering of a D-xylose metabolic pathway in eutropha W50].
    Liu K; Liu G; Zhang Y; Ding J; Weng W
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):42-52. PubMed ID: 24783853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.