These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 25258090)

  • 1. Electrokinetic energy conversion in nanofluidic channels: addressing the loose ends in nanodevice efficiency.
    Bakli C; Chakraborty S
    Electrophoresis; 2015 Mar; 36(5):675-81. PubMed ID: 25258090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of presence of salt on the dynamics of water in uncharged nanochannels.
    Bakli C; Chakraborty S
    J Chem Phys; 2013 Feb; 138(5):054504. PubMed ID: 23406130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear amplification in electrokinetic pumping in nanochannels in the presence of hydrophobic interactions.
    Chakraborty S; Chatterjee D; Bakli C
    Phys Rev Lett; 2013 May; 110(18):184503. PubMed ID: 23683203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements.
    Ghosh U; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046304. PubMed ID: 22680571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.
    Davidson C; Xuan X
    Electrophoresis; 2008 Mar; 29(5):1125-30. PubMed ID: 18246575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.
    Gillespie D; Khair AS; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Jul; 359(2):520-9. PubMed ID: 21531429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices.
    Majumder S; Dhar J; Chakraborty S
    Sci Rep; 2015 Oct; 5():14725. PubMed ID: 26437925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic energy conversion efficiency in nanofluidic channels.
    van der Heyden FH; Bonthuis DJ; Stein D; Meyer C; Dekker C
    Nano Lett; 2006 Oct; 6(10):2232-7. PubMed ID: 17034089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling electrical biomolecular detection in high ionic concentrations and enhancement of the detection limit thereof by coupling a nanofluidic crystal with reconfigurable ion concentration polarization.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Nov; 17(22):3772-3784. PubMed ID: 28983543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip-enhanced electrokinetic energy conversion in nanofluidic channels.
    Ren Y; Stein D
    Nanotechnology; 2008 May; 19(19):195707. PubMed ID: 21825725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling of electrokinetic transport in nanometer channels.
    Qiao R; Aluru NR
    Langmuir; 2005 Sep; 21(19):8972-7. PubMed ID: 16142986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic size dependent electroosmosis in ion-selective microchannels and nanochannels.
    Bandopadhyay A; Chakraborty S
    Electrophoresis; 2013 Aug; 34(15):2193-8. PubMed ID: 23712911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices.
    Wang C; Wang Y; Zhou Y; Wu ZQ; Xia XH
    Anal Bioanal Chem; 2019 Jul; 411(18):4007-4016. PubMed ID: 30972474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of effect of electrolyte types on electrokinetic energy conversion in nanoscale capillaries.
    Chein R; Tsai K; Yeh L
    Electrophoresis; 2010 Jan; 31(3):535-45. PubMed ID: 20119963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upstream events dictate interfacial slip in geometrically converging nanopores.
    Mondal N; Chaudhuri A; Bakli C; Chakraborty S
    J Chem Phys; 2021 Apr; 154(16):164709. PubMed ID: 33940837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous electrolytes near hydrophobic surfaces: dynamic effects of ion specificity and hydrodynamic slip.
    Huang DM; Cottin-Bizonne C; Ybert C; Bocquet L
    Langmuir; 2008 Feb; 24(4):1442-50. PubMed ID: 18052395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous interplay of slip, shear and wettability in nanoconfined water.
    Bakli C; Chakraborty S
    Nanoscale; 2019 Jun; 11(23):11254-11261. PubMed ID: 31162505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.