These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25258596)

  • 1. Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design.
    Chen AL; Hu YS; Jackson MA; Lin AY; Young JK; Langsner RJ; Drezek RA
    Nanoscale Res Lett; 2014; 9(1):454. PubMed ID: 25258596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Optical Properties of Plasmonic Nanoparticles in Cellular Environments are Modulated by Nanoparticle PEGylation and Serum Conditions.
    Chen AL; Jackson MA; Lin AY; Figueroa ER; Hu YS; Evans ER; Asthana V; Young JK; Drezek RA
    Nanoscale Res Lett; 2016 Dec; 11(1):303. PubMed ID: 27316744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold-copper sulfide nanoparticles.
    Zamora-Perez P; Pelaz B; Tsoutsi D; Soliman MG; Parak WJ; Rivera-Gil P
    Nanoscale; 2021 Aug; 13(31):13256-13272. PubMed ID: 34477734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy.
    Huang T; Nancy Xu XH
    J Mater Chem; 2010 Jan; 20(44):9867-9876. PubMed ID: 22707855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope.
    Albrecht W; Van Aert S; Bals S
    Acc Chem Res; 2021 Mar; 54(5):1189-1199. PubMed ID: 33566587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive plasmonic metal nanoparticle-based sensors for the detection of organophosphorus pesticides.
    Dissanayake NM; Arachchilage JS; Samuels TA; Obare SO
    Talanta; 2019 Aug; 200():218-227. PubMed ID: 31036176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation and Characterization of 3D Morphological Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-field Optical Microscopy and Spectroscopy and AFM.
    Song Y; Nallathamby PD; Huang T; Elsayed-Ali HE; Xu XH
    J Phys Chem C Nanomater Interfaces; 2010 Jan; 114(1):74-81. PubMed ID: 20190865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Cell Interactions of Non-Cationic Bionanomaterials.
    Ho LWC; Liu Y; Han R; Bai Q; Choi CHJ
    Acc Chem Res; 2019 Jun; 52(6):1519-1530. PubMed ID: 31058496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.
    Song J; Huang P; Duan H; Chen X
    Acc Chem Res; 2015 Sep; 48(9):2506-15. PubMed ID: 26134093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Particle Hyperspectral Imaging for Monitoring of Gold Nanoparticle Aggregates in Macrophages.
    Xu L; Wang X; Xu M; Liu S
    J Phys Chem B; 2023 Apr; 127(14):3231-3240. PubMed ID: 36995212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Important parameters for optimized metal nanoparticles-aided electromagnetic field (EMF) effect on cancer.
    Ochoo L; Migwi C; Okumu J
    Cancer Nanotechnol; 2018; 9(1):2. PubMed ID: 29576808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy.
    Browning LM; Huang T; Xu XH
    Interface Focus; 2013 Jun; 3(3):20120098. PubMed ID: 24427540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles.
    Seekell K; Crow MJ; Marinakos S; Ostrander J; Chilkoti A; Wax A
    J Biomed Opt; 2011 Nov; 16(11):116003. PubMed ID: 22112108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method to disentangle nanoparticle optical properties by darkfield microspectroscopy.
    Gnerucci A; Ratto F; Centi S; Conti A; Pini R; Fusi F; Romano G
    Microsc Res Tech; 2014 Nov; 77(11):886-95. PubMed ID: 25066896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of protein corona composition of gold nanoparticles following plasmonic heating.
    Mahmoudi M; Lohse SE; Murphy CJ; Fathizadeh A; Montazeri A; Suslick KS
    Nano Lett; 2014 Jan; 14(1):6-12. PubMed ID: 24328336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy.
    He W; Ai K; Jiang C; Li Y; Song X; Lu L
    Biomaterials; 2017 Jul; 132():37-47. PubMed ID: 28407493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient photothermal spectra of plasmonic nanobubbles.
    Lukianova-Hleb EY; Sassaroli E; Jones A; Lapotko DO
    Langmuir; 2012 Mar; 28(10):4858-66. PubMed ID: 22339620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells.
    Patskovsky S; Bergeron E; Meunier M
    J Biophotonics; 2015 Jan; 8(1-2):162-7. PubMed ID: 24343875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.