BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25258618)

  • 1. The influence of aminophylline on the nanostructure and nanomechanics of T lymphocytes: an AFM study.
    Huang X; He J; Liu M; Zhou C
    Nanoscale Res Lett; 2014; 9(1):518. PubMed ID: 25258618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure and nanomechanics analysis of lymphocyte using AFM: from resting, activated to apoptosis.
    Hu M; Wang J; Zhao H; Dong S; Cai J
    J Biomech; 2009 Jul; 42(10):1513-1519. PubMed ID: 19477449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane Surface Nanostructures and Adhesion Property of T Lymphocytes Exploited by AFM.
    Wu Y; Lu H; Cai J; He X; Hu Y; Zhao H; Wang X
    Nanoscale Res Lett; 2009 Jun; 4(8):942-7. PubMed ID: 20596371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and Nanomechanics of Model Membranes by Atomic Force Microscopy and Spectroscopy: Insights into the Role of Cholesterol and Sphingolipids.
    Gumí-Audenis B; Costa L; Carlá F; Comin F; Sanz F; Giannotti MI
    Membranes (Basel); 2016 Dec; 6(4):. PubMed ID: 27999368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of CD28/CD86 co-stimulatory molecules and surface properties of T and dendritic cells: An AFM study.
    Huang X; Guo H; Wang C; Mu J; Zhang H; Liang Z; Cai J; Zhou C
    Scanning; 2016 Jul; 38(4):365-75. PubMed ID: 26507362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free and quantitative evaluation of cytotoxicity based on surface nanostructure and biophysical property of cells utilizing AFM.
    Lee YJ; Lee GJ; Kang SW; Cheong Y; Park HK
    Micron; 2013 Jun; 49():54-9. PubMed ID: 23582483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the PM
    Tang M; Wang Y; Tang D; Xiu P; Yang Z; Chen Y; Wang H
    Langmuir; 2021 Apr; 37(13):4042-4048. PubMed ID: 33754728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.
    Hu M; Wang J; Cai J; Wu Y; Wang X
    Biochem Biophys Res Commun; 2008 Sep; 374(1):90-4. PubMed ID: 18602891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM detection of mitogen-induced morphological changes in human B lymphocyte.
    Wang Q; Wang M; Li S; Xing X; Liu X; Dong S; Cai J
    Scanning; 2012; 34(1):60-7. PubMed ID: 21796643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast automated processing of AFM PeakForce curves to evaluate spatially resolved Young modulus and stiffness of turgescent cells.
    Offroy M; Razafitianamaharavo A; Beaussart A; Pagnout C; Duval JFL
    RSC Adv; 2020 May; 10(33):19258-19275. PubMed ID: 35515432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric and Nanomechanical Screening of Peripheral Blood Cells with Atomic Force Microscopy for Label-Free Assessment of Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis.
    Taneva SG; Todinova S; Andreeva T
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review.
    Mukherjee R; Saha M; Routray A; Chakraborty C
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):625-33. PubMed ID: 25935044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive nanomechanics of opposing aggrecan macromolecules.
    Dean D; Han L; Grodzinsky AJ; Ortiz C
    J Biomech; 2006; 39(14):2555-65. PubMed ID: 16289077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Quantitative Nanomechanical Mapping of Starch/Kaolin Film Surfaces by Peak Force AFM.
    Kwaśniewska A; Świetlicki M; Prószyński A; Gładyszewski G
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33445773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the nanoscale phase characteristics of bitumen and bitumen in mastics and mixtures via AFM.
    Xing C; Liu L; Li M
    J Microsc; 2020 Jun; ():. PubMed ID: 32496598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the nanomechanical properties of the fission yeast (Schizosaccharomyces pombe) cell surface by atomic force microscopy.
    Gibbs E; Hsu J; Barth K; Goss JW
    Yeast; 2021 Aug; 38(8):480-492. PubMed ID: 33913187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.
    Siamantouras E; Hills CE; Squires PE; Liu KK
    Nanomedicine; 2016 May; 12(4):1013-1021. PubMed ID: 26733260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy as an advanced tool in neuroscience.
    Jembrek MJ; Šimić G; Hof PR; Šegota S
    Transl Neurosci; 2015; 6(1):117-130. PubMed ID: 28123795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy.
    Mylonaki E; Manika K; Zarogoulidis P; Domvri K; Voutsas V; Zarogoulidis K; Mourelatos D
    Mutat Res; 2012 Dec; 740(1-2):1-5. PubMed ID: 23116732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+ T cell membrane.
    Hu M; Chen J; Wang J; Wang X; Ma S; Cai J; Chen CY; Chen ZW
    J Mol Recognit; 2009; 22(6):516-20. PubMed ID: 19670272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.