These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25258618)

  • 61. Effect of lactose permease presence on the structure and nanomechanics of two-component supported lipid bilayers.
    Suárez-Germà C; Domènech O; Montero MT; Hernández-Borrell J
    Biochim Biophys Acta; 2014 Mar; 1838(3):842-52. PubMed ID: 24316189
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nanostructural characterization of catfish skin gelatin using atomic force microscopy.
    Yang H; Wang Y; Regenstein JM; Rouse DB
    J Food Sci; 2007 Oct; 72(8):C430-40. PubMed ID: 17995597
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nanomechanics in Monitoring the Effectiveness of Drugs Targeting the Cancer Cell Cytoskeleton.
    Kubiak A; Zieliński T; Pabijan J; Lekka M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233645
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanoscale Visualization of Bacterial Microcompartments Using Atomic Force Microscopy.
    Rodriguez-Ramos J; Faulkner M; Liu LN
    Methods Mol Biol; 2018; 1814():373-383. PubMed ID: 29956244
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Changes in nanomechanical properties and adhesion dynamics of algal cells during their growth.
    Pillet F; Dague E; Pečar Ilić J; Ružić I; Rols MP; Ivošević DeNardis N
    Bioelectrochemistry; 2019 Jun; 127():154-162. PubMed ID: 30826730
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Nano-mechanical model of endothelial dysfunction for AFM-based diagnostics at the cellular level.
    Szymonski M; Targosz-Korecka M; Malek-Zietek KE
    Pharmacol Rep; 2015 Aug; 67(4):728-35. PubMed ID: 26321274
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Evidence for a Role for the Plasma Membrane in the Nanomechanical Properties of the Cell Wall as Revealed by an Atomic Force Microscopy Study of the Response of Saccharomyces cerevisiae to Ethanol Stress.
    Schiavone M; Formosa-Dague C; Elsztein C; Teste MA; Martin-Yken H; De Morais MA; Dague E; François JM
    Appl Environ Microbiol; 2016 Aug; 82(15):4789-4801. PubMed ID: 27235439
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanostructure and β1-integrin distribution analysis of pig's spermatogonial stem cell by atomic force microscopy.
    Li S; Shi R; Wang Q; Cai J; Zhang S
    Gene; 2012 Mar; 495(2):189-93. PubMed ID: 22237019
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells.
    Aguayo S; Donos N; Spratt D; Bozec L
    Nanotechnology; 2015 Feb; 26(6):062001. PubMed ID: 25598514
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis.
    Cavalcanti DR; Silva LP
    Forensic Sci Int; 2019 Aug; 301():254-262. PubMed ID: 31181409
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanotribology, nanomechanics and nanomaterials characterization.
    Bhushan B
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1351-81. PubMed ID: 18156126
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The role of few-asperity contacts in adhesion.
    Thoreson EJ; Martin J; Burnham NA
    J Colloid Interface Sci; 2006 Jun; 298(1):94-101. PubMed ID: 16376923
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigation of Red Blood Cells by Atomic Force Microscopy.
    Sergunova V; Leesment S; Kozlov A; Inozemtsev V; Platitsina P; Lyapunova S; Onufrievich A; Polyakov V; Sherstyukova E
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271203
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Quantitative Elasticity Mapping of Submicron Silica Hollow Particles by PeakForce QNM AFM Mode.
    Streltsov DR; Borisov KM; Kalinina AA; Muzafarov AM
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446432
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy.
    Gisbert VG; Garcia R
    ACS Nano; 2021 Dec; 15(12):20574-20581. PubMed ID: 34851086
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy.
    Wala J; Das S
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1523-1536. PubMed ID: 31907681
    [TBL] [Abstract][Full Text] [Related]  

  • 78. AFM-Nanomechanical Test: An Interdisciplinary Tool That Links the Understanding of Cartilage and Meniscus Biomechanics, Osteoarthritis Degeneration, and Tissue Engineering.
    Han B; Nia HT; Wang C; Chandrasekaran P; Li Q; Chery DR; Li H; Grodzinsky AJ; Han L
    ACS Biomater Sci Eng; 2017 Sep; 3(9):2033-2049. PubMed ID: 31423463
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct Visualization of Interfacial Regions between Fillers and Matrix in Rubber Composites Observed by Atomic Force Microscopy-Based Nanomechanics Assisted by Electron Tomography.
    Ito M; Liu H; Kumagai A; Liang X; Nakajima K; Jinnai H
    Langmuir; 2022 Jan; 38(2):777-785. PubMed ID: 34955029
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Atomic Force Microscopy Applied to the Study of Tauopathies.
    do Nascimento Amorim MDS; Silva França ÁR; Santos-Oliveira R; Rodrigues Sanches J; Marinho Melo T; Araújo Serra Pinto B; Barbosa LRS; Alencar LMR
    ACS Chem Neurosci; 2024 Feb; 15(4):699-715. PubMed ID: 38305187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.