These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25259380)

  • 1. Barrierless tautomerization of Criegee intermediates via acid catalysis.
    Kumar M; Busch DH; Subramaniam B; Thompson WH
    Phys Chem Chem Phys; 2014 Nov; 16(42):22968-73. PubMed ID: 25259380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of vinyl hydroperoxide.
    Liu F; Fang Y; Kumar M; Thompson WH; Lester MI
    Phys Chem Chem Phys; 2015 Aug; 17(32):20490-4. PubMed ID: 26199999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry.
    Kumar M; Sinha A; Francisco JS
    Acc Chem Res; 2016 May; 49(5):877-83. PubMed ID: 27074637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic acids tunably catalyze carbonic acid decomposition.
    Kumar M; Busch DH; Subramaniam B; Thompson WH
    J Phys Chem A; 2014 Jul; 118(27):5020-8. PubMed ID: 24933150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of 5-aminolevulinic acid tautomerization: a novel self-catalyzed mechanism.
    Erdtman E; Eriksson LA
    J Phys Chem A; 2008 May; 112(18):4367-74. PubMed ID: 18416542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface.
    Kumar M; Zhong J; Zeng XC; Francisco JS
    J Am Chem Soc; 2018 Apr; 140(14):4913-4921. PubMed ID: 29564890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of cobalt(II) porphyrin-catalyzed C-H amination with organic azides: radical nature and H-atom abstraction ability of the key cobalt(III)-nitrene intermediates.
    Lyaskovskyy V; Suarez AI; Lu H; Jiang H; Zhang XP; de Bruin B
    J Am Chem Soc; 2011 Aug; 133(31):12264-73. PubMed ID: 21711027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory.
    Vansco MF; Caravan RL; Pandit S; Zuraski K; Winiberg FAF; Au K; Bhagde T; Trongsiriwat N; Walsh PJ; Osborn DL; Percival CJ; Klippenstein SJ; Taatjes CA; Lester MI
    Phys Chem Chem Phys; 2020 Dec; 22(46):26796-26805. PubMed ID: 33211784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared-driven unimolecular reaction of CH₃CHOO Criegee intermediates to OH radical products.
    Liu F; Beames JM; Petit AS; McCoy AB; Lester MI
    Science; 2014 Sep; 345(6204):1596-8. PubMed ID: 25258077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyacetone Production From C
    Taatjes CA; Liu F; Rotavera B; Kumar M; Caravan R; Osborn DL; Thompson WH; Lester MI
    J Phys Chem A; 2017 Jan; 121(1):16-23. PubMed ID: 28001404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical kinetic study of the formic acid catalyzed Criegee intermediate isomerization: multistructural anharmonicity and atmospheric implications.
    Monge-Palacios M; Rissanen MP; Wang Z; Sarathy SM
    Phys Chem Chem Phys; 2018 Apr; 20(16):10806-10814. PubMed ID: 29411814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications.
    Kumar M; Francisco JS
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13432-13435. PubMed ID: 27678012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of arylboronic acid-catalyzed amidation reaction between carboxylic acids and amines.
    Wang C; Yu HZ; Fu Y; Guo QX
    Org Biomol Chem; 2013 Apr; 11(13):2140-6. PubMed ID: 23381564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study.
    Li L; Zhang R; Ma X; Wei Y; Zhao X; Zhang R; Xu F; Li Y; Huo X; Zhang Q; Wang W
    Chemosphere; 2021 Oct; 280():130709. PubMed ID: 34162082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO.
    Beames JM; Liu F; Lu L; Lester MI
    J Chem Phys; 2013 Jun; 138(24):244307. PubMed ID: 23822244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of stabilized Criegee intermediates from ozonolysis of limonene with sulfur dioxide: ab initio and DFT study.
    Jiang L; Xu YS; Ding AZ
    J Phys Chem A; 2010 Dec; 114(47):12452-61. PubMed ID: 21053959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen-Bonding Mediated Reactions of Criegee Intermediates in the Gas Phase: Competition between Bimolecular and Termolecular Reactions and the Catalytic Role of Water.
    Chao W; Yin C; Takahashi K; Lin JJ
    J Phys Chem A; 2019 Oct; 123(39):8336-8348. PubMed ID: 31498624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.