These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. Hatsukade T; Kuhl KP; Cave ER; Abram DN; Jaramillo TF Phys Chem Chem Phys; 2014 Jul; 16(27):13814-9. PubMed ID: 24915537 [TBL] [Abstract][Full Text] [Related]
4. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
5. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO Ju W; Bagger A; Hao GP; Varela AS; Sinev I; Bon V; Roldan Cuenya B; Kaskel S; Rossmeisl J; Strasser P Nat Commun; 2017 Oct; 8(1):944. PubMed ID: 29038491 [TBL] [Abstract][Full Text] [Related]
6. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. Sha F; Han Z; Tang S; Wang J; Li C ChemSusChem; 2020 Dec; 13(23):6160-6181. PubMed ID: 33146940 [TBL] [Abstract][Full Text] [Related]
7. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
8. Structure sensitivity of methanol electrooxidation on transition metals. Ferrin P; Mavrikakis M J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206 [TBL] [Abstract][Full Text] [Related]
9. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. Olah GA; Goeppert A; Prakash GK J Org Chem; 2009 Jan; 74(2):487-98. PubMed ID: 19063591 [TBL] [Abstract][Full Text] [Related]
10. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
11. Accelerating photo-thermal CO Lorber K; Djinović P iScience; 2022 Apr; 25(4):104107. PubMed ID: 35378856 [TBL] [Abstract][Full Text] [Related]
12. Progress and Perspective of Electrocatalytic CO Zhang W; Hu Y; Ma L; Zhu G; Wang Y; Xue X; Chen R; Yang S; Jin Z Adv Sci (Weinh); 2018 Jan; 5(1):1700275. PubMed ID: 29375961 [TBL] [Abstract][Full Text] [Related]
13. Tandem Electrocatalytic CO Liu Y; Qiu H; Li J; Guo L; Ager JW ACS Appl Mater Interfaces; 2021 Sep; 13(34):40513-40521. PubMed ID: 34405982 [TBL] [Abstract][Full Text] [Related]
14. A Review on Bimetallic Nickel-Based Catalysts for CO Bian Z; Das S; Wai MH; Hongmanorom P; Kawi S Chemphyschem; 2017 Nov; 18(22):3117-3134. PubMed ID: 28710875 [TBL] [Abstract][Full Text] [Related]
15. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO Nabi AG; Aman-Ur-Rehman ; Hussain A; Chass GA; Di Tommaso D Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36615997 [TBL] [Abstract][Full Text] [Related]
16. Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO Huo S; Weng Z; Wu Z; Zhong Y; Wu Y; Fang J; Wang H ACS Appl Mater Interfaces; 2017 Aug; 9(34):28519-28526. PubMed ID: 28786653 [TBL] [Abstract][Full Text] [Related]
17. Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane. Wannakao S; Artrith N; Limtrakul J; Kolpak AM ChemSusChem; 2015 Aug; 8(16):2745-51. PubMed ID: 26219085 [TBL] [Abstract][Full Text] [Related]
18. Low Temperature Activation of Methane on Metal-Oxides and Complex Interfaces: Insights from Surface Science. Senanayake SD; Rodriguez JA; Weaver JF Acc Chem Res; 2020 Aug; 53(8):1488-1497. PubMed ID: 32659076 [TBL] [Abstract][Full Text] [Related]
19. Direct Conversion of Methane to Methanol on Ni-Ceria Surfaces: Metal-Support Interactions and Water-Enabled Catalytic Conversion by Site Blocking. Lustemberg PG; Palomino RM; Gutiérrez RA; Grinter DC; Vorokhta M; Liu Z; Ramírez PJ; Matolín V; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA J Am Chem Soc; 2018 Jun; 140(24):7681-7687. PubMed ID: 29804460 [TBL] [Abstract][Full Text] [Related]
20. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO Das S; Pérez-Ramírez J; Gong J; Dewangan N; Hidajat K; Gates BC; Kawi S Chem Soc Rev; 2020 May; 49(10):2937-3004. PubMed ID: 32407432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]