These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25259520)

  • 1. A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain slices.
    Bourgeois EB; Johnson BN; McCoy AJ; Trippa L; Cohen AS; Marsh ED
    PLoS One; 2014; 9(9):e108686. PubMed ID: 25259520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic causal modeling of hippocampal activity measured via mesoscopic voltage-sensitive dye imaging.
    Kang J; Jung K; Eo J; Son J; Park HJ
    Neuroimage; 2020 Jun; 213():116755. PubMed ID: 32199955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical-flow analysis toolbox for characterization of spatiotemporal dynamics in mesoscale optical imaging of brain activity.
    Afrashteh N; Inayat S; Mohsenvand M; Mohajerani MH
    Neuroimage; 2017 Jun; 153():58-74. PubMed ID: 28351691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between voltage-sensitive dye imaging signals and spiking activity of neural populations in primate V1.
    Chen Y; Palmer CR; Seidemann E
    J Neurophysiol; 2012 Jun; 107(12):3281-95. PubMed ID: 22422999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico voltage-sensitive dye imaging reveals the emergent dynamics of cortical populations.
    Newton TH; Reimann MW; Abdellah M; Chevtchenko G; Muller EB; Markram H
    Nat Commun; 2021 Jun; 12(1):3630. PubMed ID: 34131136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey.
    Reynaud A; Takerkart S; Masson GS; Chavane F
    Neuroimage; 2011 Jan; 54(2):1196-210. PubMed ID: 20800686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-Sensitive Dye Imaging of Neocortical Activity.
    Grinvald A; Omer DB; Sharon D; Vanzetta I; Hildesheim R
    Cold Spring Harb Protoc; 2016 Jan; 2016(1):pdb.top089367. PubMed ID: 26729915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the Dynamics of Mammalian Neocortical Population Activity In-Vivo.
    Grinvald A; Omer D; Naaman S; Sharon D
    Adv Exp Med Biol; 2015; 859():243-71. PubMed ID: 26238056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized temporally deconvolved Ca²⁺ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles.
    Pfeiffer T; Draguhn A; Reichinnek S; Both M
    Neuroimage; 2014 Jul; 94():239-249. PubMed ID: 24650598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.
    Omer DB; Hildesheim R; Grinvald A
    Neuroimage; 2013 Nov; 82():237-51. PubMed ID: 23689017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow detection of propagating waves with temporospatial correlation of activity.
    Takagaki K; Zhang C; Wu JY; Ohl FW
    J Neurosci Methods; 2011 Sep; 200(2):207-18. PubMed ID: 21664934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in voltage-sensitive dye imaging for neuroscience.
    Tsytsarev V; Liao LD; Kong KV; Liu YH; Erzurumlu RS; Olivo M; Thakor NV
    J Nanosci Nanotechnol; 2014 Jul; 14(7):4733-44. PubMed ID: 24757943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging.
    Calfa G; Hablitz JJ; Pozzo-Miller L
    J Neurophysiol; 2011 Apr; 105(4):1768-84. PubMed ID: 21307327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-sensitive dye imaging demonstrates an enhancing effect of corticotropin-releasing hormone on neuronal activity propagation through the hippocampal formation.
    von Wolff G; Avrabos C; Stepan J; Wurst W; Deussing JM; Holsboer F; Eder M
    J Psychiatr Res; 2011 Feb; 45(2):256-61. PubMed ID: 20619419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey.
    Yang Z; Heeger DJ; Seidemann E
    J Neurophysiol; 2007 Aug; 98(2):1002-14. PubMed ID: 17522170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing.
    Ayzenshtat I; Meirovithz E; Edelman H; Werner-Reiss U; Bienenstock E; Abeles M; Slovin H
    J Neurosci; 2010 Aug; 30(33):11232-45. PubMed ID: 20720131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-sensitive dye imaging: Technique review and models.
    Chemla S; Chavane F
    J Physiol Paris; 2010; 104(1-2):40-50. PubMed ID: 19909809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices.
    Cappaert NL; Lopes da Silva FH; Wadman WJ
    Hippocampus; 2009 Nov; 19(11):1065-77. PubMed ID: 19338021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal analysis of electrically evoked activity in the chicken optic tectum: a VSDI study.
    Weigel S; Luksch H
    J Neurophysiol; 2012 Jan; 107(2):640-8. PubMed ID: 22031774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.