These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25260000)

  • 1. Trapping a single vortex and reducing quasiparticles in a superconducting resonator.
    Nsanzineza I; Plourde BL
    Phys Rev Lett; 2014 Sep; 113(11):117002. PubMed ID: 25260000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator.
    de Visser PJ; Goldie DJ; Diener P; Withington S; Baselmans JJ; Klapwijk TM
    Phys Rev Lett; 2014 Jan; 112(4):047004. PubMed ID: 24580483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of stripelike flux patterns obtained by freezing kinematic vortices in a superconducting Pb film.
    Silhanek AV; Milosević MV; Kramer RB; Berdiyorov GR; Van de Vondel J; Luccas RF; Puig T; Peeters FM; Moshchalkov VV
    Phys Rev Lett; 2010 Jan; 104(1):017001. PubMed ID: 20366384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superconducting Vortex-Charge Measurement Using Cavity Electromechanics.
    Sahu SK; Mandal S; Ghosh S; Deshmukh MM; Singh V
    Nano Lett; 2022 Feb; 22(4):1665-1671. PubMed ID: 35147441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-quasiparticle trapping in aluminum nanobridge Josephson junctions.
    Levenson-Falk EM; Kos F; Vijay R; Glazman L; Siddiqi I
    Phys Rev Lett; 2014 Jan; 112(4):047002. PubMed ID: 24580481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Materials loss measurements using superconducting microwave resonators.
    McRae CRH; Wang H; Gao J; Vissers MR; Brecht T; Dunsworth A; Pappas DP; Mutus J
    Rev Sci Instrum; 2020 Sep; 91(9):091101. PubMed ID: 33003823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments.
    Mowry A; Chen Y; Kubasek J; Friedman JR
    Rev Sci Instrum; 2015 Jan; 86(1):014702. PubMed ID: 25638103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss Mechanisms and Quasiparticle Dynamics in Superconducting Microwave Resonators Made of Thin-Film Granular Aluminum.
    Grünhaupt L; Maleeva N; Skacel ST; Calvo M; Levy-Bertrand F; Ustinov AV; Rotzinger H; Monfardini A; Catelani G; Pop IM
    Phys Rev Lett; 2018 Sep; 121(11):117001. PubMed ID: 30265102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a quantum metamaterial using superconducting qubits.
    Macha P; Oelsner G; Reiner JM; Marthaler M; André S; Schön G; Hübner U; Meyer HG; Il'ichev E; Ustinov AV
    Nat Commun; 2014 Oct; 5():5146. PubMed ID: 25312205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable neutral atom trap with a thin superconducting disc.
    Shimizu F; Hufnagel C; Mukai T
    Phys Rev Lett; 2009 Dec; 103(25):253002. PubMed ID: 20366253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
    Curran PJ; Desoky WM; Milosević MV; Chaves A; Laloë JB; Moodera JS; Bending SJ
    Sci Rep; 2015 Oct; 5():15569. PubMed ID: 26492969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range nonlocal flow of vortices in narrow superconducting channels.
    Grigorieva IV; Geim AK; Dubonos SV; Novoselov KS; Vodolazov DY; Peeters FM; Kes PH; Hesselberth M
    Phys Rev Lett; 2004 Jun; 92(23):237001. PubMed ID: 15245187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vortices and quasiparticles near the superconductor-insulator transition in thin films.
    Galitski VM; Refael G; Fisher MP; Senthil T
    Phys Rev Lett; 2005 Aug; 95(7):077002. PubMed ID: 16196816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of individual vortices trapped along columnar defects in high-temperature superconductors.
    Tonomura A; Kasai H; Kamimura O; Matsuda T; Harada K; Nakayama Y; Shimoyama J; Kishio K; Hanaguri T; Kitazawa K; Sasase M; Okayasu S
    Nature; 2001 Aug; 412(6847):620-2. PubMed ID: 11493915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Characterization of Superconducting Resonators.
    Cataldo G; Barrentine EM; Brown AD; Moseley SH; U-Yen K; Wollack EJ
    J Vis Exp; 2016 May; (111):. PubMed ID: 27284966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.
    de Graaf SE; Danilov AV; Adamyan A; Kubatkin SE
    Rev Sci Instrum; 2013 Feb; 84(2):023706. PubMed ID: 23464217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.
    Verdú J; Zoubi H; Koller Ch; Majer J; Ritsch H; Schmiedmayer J
    Phys Rev Lett; 2009 Jul; 103(4):043603. PubMed ID: 19659351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
    Taupin M; Khaymovich IM; Meschke M; Mel'nikov AS; Pekola JP
    Nat Commun; 2016 Mar; 7():10977. PubMed ID: 26980225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.