These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25260028)

  • 21. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile mechanochemical synthesis of nano SnO2/graphene composite from coarse metallic Sn and graphite oxide: an outstanding anode material for lithium-ion batteries.
    Ye F; Zhao B; Ran R; Shao Z
    Chemistry; 2014 Apr; 20(14):4055-63. PubMed ID: 24616072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage.
    Chen D; Ji G; Ding B; Ma Y; Qu B; Chen W; Lee JY
    Nanoscale; 2013 Sep; 5(17):7890-6. PubMed ID: 23851576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free-standing Na(2/3)Fe(1/2)Mn(1/2)O(2)@graphene film for a sodium-ion battery cathode.
    Zhu H; Lee KT; Hitz GT; Han X; Li Y; Wan J; Lacey S; Cresce Av; Xu K; Wachsman E; Hu L
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4242-7. PubMed ID: 24588793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ammonium Vanadium Bronze, (NH
    Heo JW; Bu H; Hyoung J; Hong ST
    Inorg Chem; 2020 Apr; 59(7):4320-4327. PubMed ID: 32167299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium.
    Huang G; Chen T; Chen W; Wang Z; Chang K; Ma L; Huang F; Chen D; Lee JY
    Small; 2013 Nov; 9(21):3693-703. PubMed ID: 23766240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crumpled graphene-molybdenum oxide composite powders: preparation and application in lithium-ion batteries.
    Choi SH; Kang YC
    ChemSusChem; 2014 Feb; 7(2):523-8. PubMed ID: 24243867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries.
    Hartung S; Bucher N; Nair VS; Ling CY; Wang Y; Hoster HE; Srinivasan M
    Chemphyschem; 2014 Jul; 15(10):2121-8. PubMed ID: 25044526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Boosting zinc ion storage performance of sandwich-like V
    Liu T; Xu Z; Chen L; Zhang Y; Wang M; Jia Y; Huang Y
    J Colloid Interface Sci; 2022 May; 613():524-535. PubMed ID: 35063784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uniform decoration of vanadium oxide nanocrystals on reduced graphene-oxide balls by an aerosol process for lithium-ion battery cathode material.
    Choi SH; Kang YC
    Chemistry; 2014 May; 20(21):6294-9. PubMed ID: 24715540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron-Doped Sodium Vanadium Oxyflurophosphate Cathodes for Sodium-Ion Batteries-Electrochemical Characterization and In Situ Measurements of Heat Generation.
    Essehli R; Maher K; Amin R; Abouimrane A; Mahmoud A; Muralidharan N; Petla RK; Yahia HB; Belharouak I
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41765-41775. PubMed ID: 32809791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rechargeable Sodium-Ion Battery: High-Capacity Ammonium Vanadate Cathode with Enhanced Stability at High Rate.
    Sarkar A; Sarkar S; Sarkar T; Kumar P; Bharadwaj MD; Mitra S
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17044-53. PubMed ID: 26189927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D graphene supported MoO2 for high performance binder-free lithium ion battery.
    Huang ZX; Wang Y; Zhu YG; Shi Y; Wong JI; Yang HY
    Nanoscale; 2014 Aug; 6(16):9839-45. PubMed ID: 25028917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries.
    Wang R; Wu S; Lv Y; Lin Z
    Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries.
    Chang K; Chen W
    ACS Nano; 2011 Jun; 5(6):4720-8. PubMed ID: 21574610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of Na(1.25)V(3)O(8) nanobelts with excellent long-term stability for rechargeable lithium-ion batteries.
    Liang S; Chen T; Pan A; Liu D; Zhu Q; Cao G
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11913-7. PubMed ID: 24147642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. (NH
    Ma Y; Wu M; Jin X; Shu R; Hu C; Xu T; Li J; Meng X; Cao X
    Chemistry; 2021 Aug; 27(48):12341-12351. PubMed ID: 34196056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries.
    Su D; Wang G
    ACS Nano; 2013 Dec; 7(12):11218-26. PubMed ID: 24206168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.