BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25260372)

  • 21. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; Prudêncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning interpretable SVMs for biological sequence classification.
    Rätsch G; Sonnenburg S; Schäfer C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S9. PubMed ID: 16723012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discriminant analysis in pairwise kernel learning for SVM classification.
    Jiang H; Ching WK; Chu D
    Int J Bioinform Res Appl; 2012; 8(3-4):305-21. PubMed ID: 22961457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kernel design for RNA classification using Support Vector Machines.
    Wang JT; Wu X
    Int J Data Min Bioinform; 2006; 1(1):57-76. PubMed ID: 18402042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probabilistic inference of biological networks via data integration.
    Rogers MF; Campbell C; Ying Y
    Biomed Res Int; 2015; 2015():707453. PubMed ID: 25874225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine Learning of Protein Interactions in Fungal Secretory Pathways.
    Kludas J; Arvas M; Castillo S; Pakula T; Oja M; Brouard C; Jäntti J; Penttilä M; Rousu J
    PLoS One; 2016; 11(7):e0159302. PubMed ID: 27441920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.
    You ZH; Yin Z; Han K; Huang DS; Zhou X
    BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An SVM-based system for predicting protein subnuclear localizations.
    Lei Z; Dai Y
    BMC Bioinformatics; 2005 Dec; 6():291. PubMed ID: 16336650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects.
    Wassermann AM; Geppert H; Bajorath J
    J Chem Inf Model; 2009 Oct; 49(10):2155-67. PubMed ID: 19780576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Profile-based string kernels for remote homology detection and motif extraction.
    Kuang R; Ie E; Wang K; Wang K; Siddiqi M; Freund Y; Leslie C
    J Bioinform Comput Biol; 2005 Jun; 3(3):527-50. PubMed ID: 16108083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting gene function using similarity learning.
    Phuong T; Nhung N
    BMC Genomics; 2013; 14 Suppl 4(Suppl 4):S4. PubMed ID: 24266903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Support vector machine implementations for classification & clustering.
    Winters-Hilt S; Yelundur A; McChesney C; Landry M
    BMC Bioinformatics; 2006 Sep; 7 Suppl 2(Suppl 2):S4. PubMed ID: 17118147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinformatics algorithm based on a parallel implementation of a machine learning approach using transducers.
    Roche-Lima A; Thulasiram RK
    J Phys Conf Ser; 2012; 341():. PubMed ID: 27795731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction.
    Montesinos López OA; Mosqueda González BA; Palafox González A; Montesinos López A; Crossa J
    Front Genet; 2022; 13():887643. PubMed ID: 35719365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ranking Support Vector Machine with Kernel Approximation.
    Chen K; Li R; Dou Y; Liang Z; Lv Q
    Comput Intell Neurosci; 2017; 2017():4629534. PubMed ID: 28293256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Fold Recognition by Combining Support Vector Machines and Pairwise Sequence Similarity Scores.
    Yan K; Wen J; Liu JX; Xu Y; Liu B
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2008-2016. PubMed ID: 31940548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.