These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25260590)
1. ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation. Simons M; Diffin FM; Szczelkun MD Nucleic Acids Res; 2014 Oct; 42(19):12082-91. PubMed ID: 25260590 [TBL] [Abstract][Full Text] [Related]
2. Recycling of protein subunits during DNA translocation and cleavage by Type I restriction-modification enzymes. Simons M; Szczelkun MD Nucleic Acids Res; 2011 Sep; 39(17):7656-66. PubMed ID: 21712244 [TBL] [Abstract][Full Text] [Related]
3. RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation. Skutel M; Yanovskaya D; Demkina A; Shenfeld A; Musharova O; Severinov K; Isaev A Nucleic Acids Res; 2024 May; 52(9):5195-5208. PubMed ID: 38567730 [TBL] [Abstract][Full Text] [Related]
4. Control of the endonuclease activity of type I restriction-modification systems is required to maintain chromosome integrity following homologous recombination. Blakely GW; Murray NE Mol Microbiol; 2006 May; 60(4):883-93. PubMed ID: 16677300 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of Type IA restriction-modification complex enzyme EcoKI on the HsdR subunit. Cajthamlová K; Sisáková E; Weiser J; Weiserová M FEMS Microbiol Lett; 2007 May; 270(1):171-7. PubMed ID: 17439637 [TBL] [Abstract][Full Text] [Related]
6. The proteolytic control of restriction activity in Escherichia coli K-12. Doronina VA; Murray NE Mol Microbiol; 2001 Jan; 39(2):416-28. PubMed ID: 11136462 [TBL] [Abstract][Full Text] [Related]
7. Target recognition by EcoKI: the recognition domain is robust and restriction-deficiency commonly results from the proteolytic control of enzyme activity. O'Neill M; Powell LM; Murray NE J Mol Biol; 2001 Mar; 307(3):951-63. PubMed ID: 11273713 [TBL] [Abstract][Full Text] [Related]
8. Is modification sufficient to protect a bacterial chromosome from a resident restriction endonuclease? Makovets S; Powell LM; Titheradge AJ; Blakely GW; Murray NE Mol Microbiol; 2004 Jan; 51(1):135-47. PubMed ID: 14651617 [TBL] [Abstract][Full Text] [Related]
9. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes. Makovets S; Doronina VA; Murray NE Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9757-62. PubMed ID: 10449767 [TBL] [Abstract][Full Text] [Related]
10. ClpX and ClpP are essential for the efficient acquisition of genes specifying type IA and IB restriction systems. Makovets S; Titheradge AJ; Murray NE Mol Microbiol; 1998 Apr; 28(1):25-35. PubMed ID: 9593294 [TBL] [Abstract][Full Text] [Related]
11. Lack of regulation of the modification-dependent restriction enzyme McrBC in Escherichia coli. Murphy M; Schmid Nuoffer S; Bickle TA J Bacteriol; 2002 Mar; 184(6):1794-5. PubMed ID: 11872734 [TBL] [Abstract][Full Text] [Related]
12. Functional coupling of duplex translocation to DNA cleavage in a type I restriction enzyme. Csefalvay E; Lapkouski M; Guzanova A; Csefalvay L; Baikova T; Shevelev I; Bialevich V; Shamayeva K; Janscak P; Kuta Smatanova I; Panjikar S; Carey J; Weiserova M; Ettrich R PLoS One; 2015; 10(6):e0128700. PubMed ID: 26039067 [TBL] [Abstract][Full Text] [Related]
13. An investigation of the structural requirements for ATP hydrolysis and DNA cleavage by the EcoKI Type I DNA restriction and modification enzyme. Roberts GA; Cooper LP; White JH; Su TJ; Zipprich JT; Geary P; Kennedy C; Dryden DT Nucleic Acids Res; 2011 Sep; 39(17):7667-76. PubMed ID: 21685455 [TBL] [Abstract][Full Text] [Related]
14. The structure of the KlcA and ArdB proteins reveals a novel fold and antirestriction activity against Type I DNA restriction systems in vivo but not in vitro. Serfiotis-Mitsa D; Herbert AP; Roberts GA; Soares DC; White JH; Blakely GW; Uhrín D; Dryden DT Nucleic Acids Res; 2010 Mar; 38(5):1723-37. PubMed ID: 20007596 [TBL] [Abstract][Full Text] [Related]
15. Characterization of an EcoR124I restriction-modification enzyme produced from a deleted form of the DNA-binding subunit, which results in a novel DNA specificity. Abadjieva A; Scarlett G; Janscák P; Dutta CF; Firman K Folia Microbiol (Praha); 2003; 48(3):319-28. PubMed ID: 12879741 [TBL] [Abstract][Full Text] [Related]
16. Roles of PriA protein and double-strand DNA break repair functions in UV-induced restriction alleviation in Escherichia coli. Ivancić-Bacće I; Vlasić I; Cogelja-Cajo G; Brcić-Kostić K; Salaj-Smic E Genetics; 2006 Dec; 174(4):2137-49. PubMed ID: 17028321 [TBL] [Abstract][Full Text] [Related]
17. Removal of a frameshift between the hsdM and hsdS genes of the EcoKI Type IA DNA restriction and modification system produces a new type of system and links the different families of Type I systems. Roberts GA; Chen K; Cooper LP; White JH; Blakely GW; Dryden DT Nucleic Acids Res; 2012 Nov; 40(21):10916-24. PubMed ID: 23002145 [TBL] [Abstract][Full Text] [Related]
18. Single amino acid substitutions in the HsdR subunit of the type IB restriction enzyme EcoAI uncouple the DNA translocation and DNA cleavage activities of the enzyme. Janscak P; Sandmeier U; Bickle TA Nucleic Acids Res; 1999 Jul; 27(13):2638-43. PubMed ID: 10373579 [TBL] [Abstract][Full Text] [Related]
19. [Antirestriction and antimodification activities of the ArdA protein encoded by the IncI1 transmissive plasmids R-64 and ColIb-P9]. Zavil'gel'skiĭ GB; Letuchaia TA; Rastorguev SM Genetika; 2006 Mar; 42(3):331-8. PubMed ID: 16649659 [TBL] [Abstract][Full Text] [Related]
20. [Antirestriction activity of the mercury resistance nonconjugative transposon Tn5053 is controlled by the protease ClpXP]. Zavigel'skiĭ GB; Kotova VIu; Mel'kina OE; Pustovoĭt KS Genetika; 2014 Sep; 50(9):1033-9. PubMed ID: 25735133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]