BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25260623)

  • 1. Rhodopsin management during the light-dark cycle of Anopheles gambiae mosquitoes.
    Moon YM; Metoxen AJ; Leming MT; Whaley MA; O'Tousa JE
    J Insect Physiol; 2014 Nov; 70():88-93. PubMed ID: 25260623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Driven Processes Control Both Rhodopsin Maturation and Recycling in Mosquito Photoreceptors.
    Metoxen AJ; Leming MT; Hu X; Whaley MA; O'Tousa JE
    J Neurosci; 2016 Oct; 36(43):11051-11058. PubMed ID: 27798185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes.
    Hu X; Leming MT; Whaley MA; O'Tousa JE
    J Exp Biol; 2014 Mar; 217(Pt 6):1003-8. PubMed ID: 24311804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Drosophila rhodopsin cytoplasmic tail domain is required for maintenance of rhabdomere structure.
    Ahmad ST; Natochin M; Artemyev NO; O'Tousa JE
    FASEB J; 2007 Feb; 21(2):449-55. PubMed ID: 17158966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-mediated control of rhodopsin movement in mosquito photoreceptors.
    Hu X; Leming MT; Metoxen AJ; Whaley MA; O'Tousa JE
    J Neurosci; 2012 Oct; 32(40):13661-7. PubMed ID: 23035078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes.
    Rocha M; Kimler KJ; Leming MT; Hu X; Whaley MA; O'Tousa JE
    J Exp Biol; 2015 May; 218(Pt 9):1386-92. PubMed ID: 25750414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: Implications for species-specific behavior.
    Hu X; England JH; Lani AC; Tung JJ; Ward NJ; Adams SM; Barber KA; Whaley MA; O'Tousa JE
    J Comp Neurol; 2009 Oct; 516(4):334-42. PubMed ID: 19637310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual acuity of fly photoreceptors in natural conditions--dependence on UV sensitizing pigment and light-controlling pupil.
    Stavenga DG
    J Exp Biol; 2004 Apr; 207(Pt 10):1703-13. PubMed ID: 15073203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.
    Stavenga DG; Hardie RC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Mar; 197(3):227-41. PubMed ID: 21046112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of four opsins and two G alpha subtypes co-expressed in the molluscan rhabdomeric photoreceptor.
    Matsuo R; Koyanagi M; Sugihara T; Shirata T; Nagata T; Inoue K; Matsuo Y; Terakita A
    BMC Biol; 2023 Dec; 21(1):291. PubMed ID: 38110917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors.
    Hu X; Whaley MA; Stein MM; Mitchell BE; O'Tousa JE
    PLoS One; 2011; 6(8):e23121. PubMed ID: 21858005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae.
    Rund SS; Gentile JE; Duffield GE
    BMC Genomics; 2013 Apr; 14():218. PubMed ID: 23552056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila Rhodopsin 7 can partially replace the structural role of Rhodopsin 1, but not its physiological function.
    Grebler R; Kistenpfennig C; Rieger D; Bentrop J; Schneuwly S; Senthilan PR; Helfrich-Förster C
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Aug; 203(8):649-659. PubMed ID: 28500442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.
    Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F
    J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreceptor processes: some problems and perspectives.
    Goldsmith TH
    J Exp Zool; 1975 Oct; 194(1):89-101. PubMed ID: 453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. dPob/EMC is essential for biosynthesis of rhodopsin and other multi-pass membrane proteins in Drosophila photoreceptors.
    Satoh T; Ohba A; Liu Z; Inagaki T; Satoh AK
    Elife; 2015 Feb; 4():. PubMed ID: 25715730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pph13 and orthodenticle define a dual regulatory pathway for photoreceptor cell morphogenesis and function.
    Mishra M; Oke A; Lebel C; McDonald EC; Plummer Z; Cook TA; Zelhof AC
    Development; 2010 Sep; 137(17):2895-904. PubMed ID: 20667913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calnexin is essential for rhodopsin maturation, Ca2+ regulation, and photoreceptor cell survival.
    Rosenbaum EE; Hardie RC; Colley NJ
    Neuron; 2006 Jan; 49(2):229-41. PubMed ID: 16423697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between ambient lighting conditions, absolute dark-adapted thresholds, and rhodopsin in black and hypopigmented mice.
    Daly GH; DiLeonardo JM; Balkema NR; Balkema GW
    Vis Neurosci; 2004; 21(6):925-34. PubMed ID: 15733347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.