BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25260707)

  • 1. Sex Differences Distinguish Intracortical Glutamate Receptor-Mediated Regulation of Extracellular Dopamine Levels in the Prefrontal Cortex of Adult Rats.
    Locklear MN; Cohen AB; Jone A; Kritzer MF
    Cereb Cortex; 2016 Feb; 26(2):599-610. PubMed ID: 25260707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA and AMPA/kainate glutamatergic agonists increase the extracellular concentrations of GABA in the prefrontal cortex of the freely moving rat: modulation by endogenous dopamine.
    Del Arco A; Mora F
    Brain Res Bull; 2002 Mar; 57(5):623-30. PubMed ID: 11927365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgen influence on prefrontal dopamine systems in adult male rats: localization of cognate intracellular receptors in medial prefrontal projections to the ventral tegmental area and effects of gonadectomy and hormone replacement on glutamate-stimulated extracellular dopamine level.
    Aubele T; Kritzer MF
    Cereb Cortex; 2012 Aug; 22(8):1799-812. PubMed ID: 21940701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D
    Auger ML; Meccia J; Phillips AG; Floresco SB
    Neuropharmacology; 2020 Jan; 162():107844. PubMed ID: 31704272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of quetiapine on monoamine, GABA, and glutamate release in rat prefrontal cortex.
    Yamamura S; Ohoyama K; Hamaguchi T; Kashimoto K; Nakagawa M; Kanehara S; Suzuki D; Matsumoto T; Motomura E; Shiroyama T; Okada M
    Psychopharmacology (Berl); 2009 Oct; 206(2):243-58. PubMed ID: 19575183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum.
    Balla A; Nattini ME; Sershen H; Lajtha A; Dunlop DS; Javitt DC
    Neuropharmacology; 2009 Apr; 56(5):915-21. PubMed ID: 19371582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric regulation of the rat medial prefrontal cortical glutamate stress response: role of local GABA- and dopamine-sensitive mechanisms.
    Lupinsky D; Moquin L; Gratton A
    Psychopharmacology (Berl); 2017 Feb; 234(3):353-363. PubMed ID: 27822602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cocaine-induced increases in medial prefrontal cortical GABA transmission involves glutamatergic receptors.
    Jayaram P; Steketee JD
    Eur J Pharmacol; 2006 Feb; 531(1-3):74-9. PubMed ID: 16409999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms.
    Tseng KY; O'Donnell P
    J Neurosci; 2004 Jun; 24(22):5131-9. PubMed ID: 15175382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential regulation of glutamate, aspartate and gamma-amino-butyrate release by N-methyl-D-aspartate receptors in rat striatum after partial and extensive lesions to the nigro-striatal dopamine pathway.
    Abarca J; Bustos G
    Neurochem Int; 1999 Jul; 35(1):19-33. PubMed ID: 10403427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine release in the prefrontal cortex during stress is reduced by the local activation of glutamate receptors.
    Del Arco A; Mora F
    Brain Res Bull; 2001 Sep; 56(2):125-30. PubMed ID: 11704349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interhemispheric regulation of the medial prefrontal cortical glutamate stress response in rats.
    Lupinsky D; Moquin L; Gratton A
    J Neurosci; 2010 Jun; 30(22):7624-33. PubMed ID: 20519537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypotension-induced dopamine release in prefrontal cortex is mediated by local glutamatergic projections at the level of nerve terminals.
    Kawahara Y; Kawahara H; Westerink BH
    J Neurochem; 2002 Apr; 81(2):285-91. PubMed ID: 12064475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine, and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors.
    Del Arco A; Mora F
    Neurochem Res; 1999 Aug; 24(8):1027-35. PubMed ID: 10478942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of NMDA receptors in the prefrontal cortex increases dopamine and acetylcholine release in the nucleus accumbens and motor activity.
    Del Arco A; Segovia G; Mora F
    Psychopharmacology (Berl); 2008 Dec; 201(3):325-38. PubMed ID: 18751970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of glutamate neurotransmission and N-methyl-d-aspartate receptor in the activation of midbrain dopamine neurons by 5-HT1A receptor agonists: an electrophysiological study in the rat.
    Gronier B
    Neuroscience; 2008 Oct; 156(4):995-1004. PubMed ID: 18801415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a differential medial prefrontal dopamine D1 and D2 receptor regulation of local and ventral tegmental glutamate and GABA release: a dual probe microdialysis study in the awake rat.
    Harte M; O'Connor WT
    Brain Res; 2004 Aug; 1017(1-2):120-9. PubMed ID: 15261107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamatergic control of dopamine release during stress in the rat prefrontal cortex.
    Jedema HP; Moghaddam B
    J Neurochem; 1994 Aug; 63(2):785-8. PubMed ID: 7518503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of extracellular d-serine content by calcium permeable AMPA receptors in rat medial prefrontal cortex as revealed by in vivo microdialysis.
    Ishiwata S; Umino A; Umino M; Yorita K; Fukui K; Nishikawa T
    Int J Neuropsychopharmacol; 2013 Jul; 16(6):1395-406. PubMed ID: 23298512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical GABAergic regulation of dopaminergic responses to psychological stress in the rat dorsolateral striatum.
    Matsumoto M; Togashi H; Kaku A; Kanno M; Tahara K; Yoshioka M
    Synapse; 2005 May; 56(2):117-21. PubMed ID: 15729738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.