These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 25260994)
1. Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013). Pollman CD; Axelrad DM Bull Environ Contam Toxicol; 2014 Nov; 93(5):509-16. PubMed ID: 25260994 [TBL] [Abstract][Full Text] [Related]
2. Reply to "Mercury Bioaccumulation and Bioaccumulation Factors for Everglades Mosquitofish as Related to Sulfate: A Re-Analysis of Julian II (2013)". Julian P Bull Environ Contam Toxicol; 2014 Nov; 93(5):517-21. PubMed ID: 25266044 [No Abstract] [Full Text] [Related]
3. Response to Julian et al. (2015) "comment on and reinterpretation of Gabriel et al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'". Gabriel MC; Axelrad D; Orem W; Osborne TZ Environ Manage; 2015 Jun; 55(6):1227-31. PubMed ID: 25860595 [TBL] [Abstract][Full Text] [Related]
4. Mercury bio-concentration factor in mosquito fish (Gambusia spp.) in the Florida Everglades. Julian P Bull Environ Contam Toxicol; 2013 Mar; 90(3):329-32. PubMed ID: 23269441 [TBL] [Abstract][Full Text] [Related]
5. Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades. Liu G; Cai Y; Mao Y; Scheidt D; Kalla P; Richards J; Scinto LJ; Tachiev G; Roelant D; Appleby C Environ Sci Technol; 2009 Jun; 43(12):4361-6. PubMed ID: 19603647 [TBL] [Abstract][Full Text] [Related]
6. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation. Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404 [TBL] [Abstract][Full Text] [Related]
7. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'. Julian P; Gu B; Redfield G Environ Manage; 2015 Jan; 55(1):1-5. PubMed ID: 25248934 [TBL] [Abstract][Full Text] [Related]
8. Decadal trends of mercury cycling and bioaccumulation within Everglades National Park. Janssen SE; Tate MT; Poulin BA; Krabbenhoft DP; DeWild JF; Ogorek JM; Varonka MS; Orem WH; Kline JL Sci Total Environ; 2022 Sep; 838(Pt 1):156031. PubMed ID: 35595135 [TBL] [Abstract][Full Text] [Related]
9. Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate. Harmon SM; King JK; Gladden JB; Chandler GT; Newman LA Chemosphere; 2005 Apr; 59(2):227-33. PubMed ID: 15722094 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal effects of interacting water quality constituents on mercury in a common prey fish in a large, perturbed, subtropical wetland. Kalla P; Cyterski M; Scheidt D; Minucci J Sci Total Environ; 2021 Oct; 792():148321. PubMed ID: 34153761 [TBL] [Abstract][Full Text] [Related]
11. Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Bae HS; Dierberg FE; Ogram A Appl Environ Microbiol; 2014 Oct; 80(20):6517-26. PubMed ID: 25107983 [TBL] [Abstract][Full Text] [Related]
12. Fish mercury and surface water sulfate relationships in the Everglades Protection Area. Gabriel MC; Howard N; Osborne TZ Environ Manage; 2014 Mar; 53(3):583-93. PubMed ID: 24385066 [TBL] [Abstract][Full Text] [Related]
13. Mercury cycling in aquatic ecosystems and trophic state-related variables--implications from structural equation modeling. Pollman CD Sci Total Environ; 2014 Nov; 499():62-73. PubMed ID: 25173863 [TBL] [Abstract][Full Text] [Related]
14. Mercury accumulation in largemouth bass (Micropterus salmoides Lacépède) within marsh ecosystems of the Florida Everglades, USA. Julian P; Gu B Ecotoxicology; 2015 Jan; 24(1):202-14. PubMed ID: 25336046 [TBL] [Abstract][Full Text] [Related]
15. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades. Li Y; Mao Y; Liu G; Tachiev G; Roelant D; Feng X; Cai Y Environ Sci Technol; 2010 Sep; 44(17):6661-6. PubMed ID: 20701294 [TBL] [Abstract][Full Text] [Related]
16. Tracing sources of sulfur in the Florida Everglades. Bates AL; Orem WH; Harvey JW; Spiker EC J Environ Qual; 2002; 31(1):287-99. PubMed ID: 11837434 [TBL] [Abstract][Full Text] [Related]
17. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US. Wang Y; Gu B; Lee MK; Jiang S; Xu Y Sci Total Environ; 2014 Jul; 487():557-64. PubMed ID: 24813771 [TBL] [Abstract][Full Text] [Related]
18. Variation of total mercury concentrations in pig frogs (Rana grylio) across the Florida Everglades, USA. Ugarte CA; Rice KG; Donnelly MA Sci Total Environ; 2005 Jun; 345(1-3):51-9. PubMed ID: 15919527 [TBL] [Abstract][Full Text] [Related]
19. Estimation of the major source and sink of methylmercury in the Florida Everglades. Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798 [TBL] [Abstract][Full Text] [Related]
20. Levels of mercury in alligators (Alligator mississippiensis) collected along a transect through the Florida Everglades. Rumbold DG; Fink LE; Laine KA; Niemczyk SL; Chandrasekhar T; Wankel SD; Kendall C Sci Total Environ; 2002 Oct; 297(1-3):239-52. PubMed ID: 12389795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]