These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 25261250)
1. Profiling of sugar transporter genes in grapevine coping with water deficit. Medici A; Laloi M; Atanassova R FEBS Lett; 2014 Nov; 588(21):3989-97. PubMed ID: 25261250 [TBL] [Abstract][Full Text] [Related]
2. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Murcia G; Pontin M; Reinoso H; Baraldi R; Bertazza G; Gómez-Talquenca S; Bottini R; Piccoli PN Physiol Plant; 2016 Mar; 156(3):323-37. PubMed ID: 26411544 [TBL] [Abstract][Full Text] [Related]
4. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Hayes MA; Feechan A; Dry IB Plant Physiol; 2010 May; 153(1):211-21. PubMed ID: 20348211 [TBL] [Abstract][Full Text] [Related]
5. Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. Hayes MA; Davies C; Dry IB J Exp Bot; 2007; 58(8):1985-97. PubMed ID: 17452752 [TBL] [Abstract][Full Text] [Related]
6. ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. Rossdeutsch L; Edwards E; Cookson SJ; Barrieu F; Gambetta GA; Delrot S; Ollat N BMC Plant Biol; 2016 Apr; 16():91. PubMed ID: 27091220 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance. Hopper DW; Ghan R; Schlauch KA; Cramer GR BMC Plant Biol; 2016 May; 16(1):118. PubMed ID: 27215785 [TBL] [Abstract][Full Text] [Related]
8. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. Conde A; Regalado A; Rodrigues D; Costa JM; Blumwald E; Chaves MM; Gerós H J Exp Bot; 2015 Feb; 66(3):889-906. PubMed ID: 25433029 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Castellarin SD; Pfeiffer A; Sivilotti P; Degan M; Peterlunger E; DI Gaspero G Plant Cell Environ; 2007 Nov; 30(11):1381-99. PubMed ID: 17897409 [TBL] [Abstract][Full Text] [Related]
10. An update on sugar transport and signalling in grapevine. Lecourieux F; Kappel C; Lecourieux D; Serrano A; Torres E; Arce-Johnson P; Delrot S J Exp Bot; 2014 Mar; 65(3):821-32. PubMed ID: 24323501 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic response is more sensitive to water deficit in shoots than roots of Vitis riparia (Michx.). Khadka VS; Vaughn K; Xie J; Swaminathan P; Ma Q; Cramer GR; Fennell AY BMC Plant Biol; 2019 Feb; 19(1):72. PubMed ID: 30760212 [TBL] [Abstract][Full Text] [Related]
12. VvHT1 encodes a monosaccharide transporter expressed in the conducting complex of the grape berry phloem. Vignault C; Vachaud M; Cakir B; Glissant D; Dédaldéchamp F; Büttner M; Atanassova R; Fleurat-Lessard P; Lemoine R; Delrot S J Exp Bot; 2005 May; 56(415):1409-18. PubMed ID: 15809282 [TBL] [Abstract][Full Text] [Related]
13. Drought tolerance of the grapevine, Vitis champinii cv. Ramsey, is associated with higher photosynthesis and greater transcriptomic responsiveness of abscisic acid biosynthesis and signaling. Cochetel N; Ghan R; Toups HS; Degu A; Tillett RL; Schlauch KA; Cramer GR BMC Plant Biol; 2020 Feb; 20(1):55. PubMed ID: 32019503 [TBL] [Abstract][Full Text] [Related]
14. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Chong J; Piron MC; Meyer S; Merdinoglu D; Bertsch C; Mestre P J Exp Bot; 2014 Dec; 65(22):6589-601. PubMed ID: 25246444 [TBL] [Abstract][Full Text] [Related]
15. Recovery from water stress affects grape leaf petiole transcriptome. Perrone I; Pagliarani C; Lovisolo C; Chitarra W; Roman F; Schubert A Planta; 2012 Jun; 235(6):1383-96. PubMed ID: 22241135 [TBL] [Abstract][Full Text] [Related]
16. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri x V. rupestris). Pou A; Flexas J; Alsina Mdel M; Bota J; Carambula C; de Herralde F; Galmés J; Lovisolo C; Jiménez M; Ribas-Carbó M; Rusjan D; Secchi F; Tomàs M; Zsófi Z; Medrano H Physiol Plant; 2008 Oct; 134(2):313-23. PubMed ID: 18507813 [TBL] [Abstract][Full Text] [Related]
17. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Choi HK; Iandolino A; da Silva FG; Cook DR Mol Plant Microbe Interact; 2013 Jun; 26(6):643-57. PubMed ID: 23425100 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). Savoi S; Wong DC; Arapitsas P; Miculan M; Bucchetti B; Peterlunger E; Fait A; Mattivi F; Castellarin SD BMC Plant Biol; 2016 Mar; 16():67. PubMed ID: 27001212 [TBL] [Abstract][Full Text] [Related]
19. A grapevine Shaker inward K(+) channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Cuéllar T; Pascaud F; Verdeil JL; Torregrosa L; Adam-Blondon AF; Thibaud JB; Sentenac H; Gaillard I Plant J; 2010 Jan; 61(1):58-69. PubMed ID: 19781051 [TBL] [Abstract][Full Text] [Related]
20. Exogenous abscisic acid enhances physiological, metabolic, and transcriptional cold acclimation responses in greenhouse-grown grapevines. Wang H; Blakeslee JJ; Jones ML; Chapin LJ; Dami IE Plant Sci; 2020 Apr; 293():110437. PubMed ID: 32081274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]