These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 25261251)
1. Cyclin D1 acts as a barrier to pluripotent reprogramming by promoting neural progenitor fate commitment. Chen CL; Wang LJ; Yan YT; Hsu HW; Su HL; Chang FP; Hsieh PC; Hwang SM; Shen CN FEBS Lett; 2014 Nov; 588(21):4008-17. PubMed ID: 25261251 [TBL] [Abstract][Full Text] [Related]
2. Reprogramming fibroblasts to neural-precursor-like cells by structured overexpression of pallial patterning genes. Raciti M; Granzotto M; Duc MD; Fimiani C; Cellot G; Cherubini E; Mallamaci A Mol Cell Neurosci; 2013 Nov; 57():42-53. PubMed ID: 24128663 [TBL] [Abstract][Full Text] [Related]
3. Isolation of a pluripotent neural stem cell from the embryonic bovine brain. Gao Y; Li X; Zheng D; Guan W; Ma Y Int J Mol Sci; 2015 Mar; 16(3):5990-9. PubMed ID: 25782160 [TBL] [Abstract][Full Text] [Related]
4. Pluripotent stem cell model reveals essential roles for miR-450b-5p and miR-184 in embryonic corneal lineage specification. Shalom-Feuerstein R; Serror L; De La Forest Divonne S; Petit I; Aberdam E; Camargo L; Damour O; Vigouroux C; Solomon A; Gaggioli C; Itskovitz-Eldor J; Ahmad S; Aberdam D Stem Cells; 2012 May; 30(5):898-909. PubMed ID: 22367714 [TBL] [Abstract][Full Text] [Related]
5. Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Zhu S; Ambasudhan R; Sun W; Kim HJ; Talantova M; Wang X; Zhang M; Zhang Y; Laurent T; Parker J; Kim HS; Zaremba JD; Saleem S; Sanz-Blasco S; Masliah E; McKercher SR; Cho YS; Lipton SA; Kim J; Ding S Cell Res; 2014 Jan; 24(1):126-9. PubMed ID: 24296783 [No Abstract] [Full Text] [Related]
6. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Jiang G; Di Bernardo J; Maiden MM; Villa-Diaz LG; Mabrouk OS; Krebsbach PH; O'Shea KS; Kunisaki SM Stem Cells Dev; 2014 Nov; 23(21):2613-25. PubMed ID: 25014361 [TBL] [Abstract][Full Text] [Related]
7. Gata4 blocks somatic cell reprogramming by directly repressing Nanog. Serrano F; Calatayud CF; Blazquez M; Torres J; Castell JV; Bort R Stem Cells; 2013 Jan; 31(1):71-82. PubMed ID: 23132827 [TBL] [Abstract][Full Text] [Related]
8. Defined factors induce reprogramming of gastrointestinal cancer cells. Miyoshi N; Ishii H; Nagai K; Hoshino H; Mimori K; Tanaka F; Nagano H; Sekimoto M; Doki Y; Mori M Proc Natl Acad Sci U S A; 2010 Jan; 107(1):40-5. PubMed ID: 20018687 [TBL] [Abstract][Full Text] [Related]
9. Improved method of producing human neural progenitor cells of high purity and in large quantities from pluripotent stem cells for transplantation studies. Puttonen KA; Ruponen M; Kauppinen R; Wojciechowski S; Hovatta O; Koistinaho J Cell Transplant; 2013; 22(10):1753-66. PubMed ID: 23127329 [TBL] [Abstract][Full Text] [Related]
10. Formula G1: Cell cycle in the driver's seat of stem cell fate determination. Julian LM; Carpenedo RL; Rothberg JL; Stanford WL Bioessays; 2016 Apr; 38(4):325-32. PubMed ID: 26857166 [TBL] [Abstract][Full Text] [Related]
11. Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. Zaghloul NA; Moody SA Dev Biol; 2007 Jun; 306(1):222-40. PubMed ID: 17434474 [TBL] [Abstract][Full Text] [Related]
12. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Wada N; Wang B; Lin NH; Laslett AL; Gronthos S; Bartold PM J Periodontal Res; 2011 Aug; 46(4):438-47. PubMed ID: 21443752 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Balmer NV; Weng MK; Zimmer B; Ivanova VN; Chambers SM; Nikolaeva E; Jagtap S; Sachinidis A; Hescheler J; Waldmann T; Leist M Hum Mol Genet; 2012 Sep; 21(18):4104-14. PubMed ID: 22723015 [TBL] [Abstract][Full Text] [Related]
14. Effect of hypoxia on neural induction in colonies of human parthenogenetic stem cells. Abramihina TV; Isaev DA; Semechkin RA Bull Exp Biol Med; 2012 Nov; 154(1):130-2. PubMed ID: 23330108 [TBL] [Abstract][Full Text] [Related]
15. Reprogramming of mouse fibroblasts into induced pluripotent stem cells with Nanog. Moon JH; Yun W; Kim J; Hyeon S; Kang PJ; Park G; Kim A; Oh S; Whang KY; Kim DW; Yoon BS; You S Biochem Biophys Res Commun; 2013 Feb; 431(3):444-9. PubMed ID: 23333380 [TBL] [Abstract][Full Text] [Related]
16. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Denton KR; Xu CC; Li XJ Methods Mol Biol; 2016; 1353():309-21. PubMed ID: 25520289 [TBL] [Abstract][Full Text] [Related]
17. Efficient neuronal differentiation and maturation of human pluripotent stem cells encapsulated in 3D microfibrous scaffolds. Lu HF; Lim SX; Leong MF; Narayanan K; Toh RP; Gao S; Wan AC Biomaterials; 2012 Dec; 33(36):9179-87. PubMed ID: 22998816 [TBL] [Abstract][Full Text] [Related]