BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25261514)

  • 1. A highly diastereoselective oxidant contributes to Ligninolysis by the white rot basidiomycete Ceriporiopsis subvermispora.
    Yelle DJ; Kapich AN; Houtman CJ; Lu F; Timokhin VI; Fort RC; Ralph J; Hammel KE
    Appl Environ Microbiol; 2014 Dec; 80(24):7536-44. PubMed ID: 25261514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The white rot basidiomycete
    Kapich AN; Suzuki H; Hirth KC; Fernández-Fueyo E; Martínez AT; Houtman CJ; Hammel KE
    Appl Environ Microbiol; 2024 Apr; 90(4):e0204423. PubMed ID: 38483171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis.
    Fernandez-Fueyo E; Ruiz-Dueñas FJ; Ferreira P; Floudas D; Hibbett DS; Canessa P; Larrondo LF; James TY; Seelenfreund D; Lobos S; Polanco R; Tello M; Honda Y; Watanabe T; Watanabe T; Ryu JS; Kubicek CP; Schmoll M; Gaskell J; Hammel KE; St John FJ; Vanden Wymelenberg A; Sabat G; Splinter BonDurant S; Syed K; Yadav JS; Doddapaneni H; Subramanian V; Lavín JL; Oguiza JA; Perez G; Pisabarro AG; Ramirez L; Santoyo F; Master E; Coutinho PM; Henrissat B; Lombard V; Magnuson JK; Kües U; Hori C; Igarashi K; Samejima M; Held BW; Barry KW; LaButti KM; Lapidus A; Lindquist EA; Lucas SM; Riley R; Salamov AA; Hoffmeister D; Schwenk D; Hadar Y; Yarden O; de Vries RP; Wiebenga A; Stenlid J; Eastwood D; Grigoriev IV; Berka RM; Blanchette RA; Kersten P; Martinez AT; Vicuna R; Cullen D
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5458-63. PubMed ID: 22434909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose.
    Hori C; Gaskell J; Igarashi K; Kersten P; Mozuch M; Samejima M; Cullen D
    Appl Environ Microbiol; 2014 Apr; 80(7):2062-70. PubMed ID: 24441164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood.
    Korripally P; Hunt CG; Houtman CJ; Jones DC; Kitin PJ; Cullen D; Hammel KE
    Appl Environ Microbiol; 2015 Nov; 81(22):7802-12. PubMed ID: 26341198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora.
    Fernández-Fueyo E; Ruiz-Dueñas FJ; Miki Y; Martínez MJ; Hammel KE; Martínez AT
    J Biol Chem; 2012 May; 287(20):16903-16. PubMed ID: 22437835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism.
    Hunt CG; Houtman CJ; Jones DC; Kitin P; Korripally P; Hammel KE
    Environ Microbiol; 2013 Mar; 15(3):956-66. PubMed ID: 23206186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications.
    Mendonça RT; Jara JF; González V; Elissetche JP; Freer J
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1323-30. PubMed ID: 18712558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.
    Srebotnik E; Jensen KA; Hammel KE
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12794-7. PubMed ID: 11607502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence That Ceriporiopsis subvermispora Degrades Nonphenolic Lignin Structures by a One-Electron-Oxidation Mechanism.
    Srebotnik E; Jensen KA; Kawai S; Hammel KE
    Appl Environ Microbiol; 1997 Nov; 63(11):4435-40. PubMed ID: 16535732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fungal lignin peroxidase does not produce the veratryl alcohol cation radical as a diffusible ligninolytic oxidant.
    Houtman CJ; Maligaspe E; Hunt CG; Fernández-Fueyo E; Martínez AT; Hammel KE
    J Biol Chem; 2018 Mar; 293(13):4702-4712. PubMed ID: 29462790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization.
    Rekik H; Zaraî Jaouadi N; Bouacem K; Zenati B; Kourdali S; Badis A; Annane R; Bouanane-Darenfed A; Bejar S; Jaouadi B
    Int J Biol Macromol; 2019 Mar; 125():514-525. PubMed ID: 30528991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.
    Thanh Mai Pham L; Kim YH
    Enzyme Microb Technol; 2016 Jan; 82():66-73. PubMed ID: 26672450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of highly branched glucan sheath from Ceriporiopsis subvermispora.
    Suzuki D; Nishimura H; Yoshioka K; Kaida R; Hayashi T; Takabe K; Watanabe T
    Int J Biol Macromol; 2017 Feb; 95():1210-1215. PubMed ID: 27825996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alkadienyl and alkenyl itaconic acids (ceriporic acids G and H) from the selective white-rot fungus Ceriporiopsis subvermispora: a new class of metabolites initiating ligninolytic lipid peroxidation.
    Nishimura H; Sasaki M; Seike H; Nakamura M; Watanabe T
    Org Biomol Chem; 2012 Aug; 10(31):6432-42. PubMed ID: 22739503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebrosides, extracellular glycolipids secreted by the selective lignin-degrading fungus Ceriporiopsis subvermispora.
    Nishimura H; Yamaguchi D; Watanabe T
    Chem Phys Lipids; 2017 Mar; 203():1-11. PubMed ID: 28062355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of intracellular proteins from a white-rot fungus surrounded by polysaccharide sheath and optimization of their two-dimensional electrophoresis for proteomic studies.
    Watanabe T; Yoshioka K; Kido A; Lee J; Akiyoshi H; Watanabe T
    J Microbiol Methods; 2017 Nov; 142():63-70. PubMed ID: 28916445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe
    Shah F; Mali T; Lundell TK
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New polymeric model substrates for the study of microbial ligninolysis.
    Kawai S; Jensen KA; Bao W; Hammel KE
    Appl Environ Microbiol; 1995 Sep; 61(9):3407-14. PubMed ID: 7574649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of fungal peroxidases in biological ligninolysis.
    Hammel KE; Cullen D
    Curr Opin Plant Biol; 2008 Jun; 11(3):349-55. PubMed ID: 18359268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.