These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25261525)

  • 1. Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility.
    Gillis A; Mahillon J
    Appl Environ Microbiol; 2014 Dec; 80(24):7620-30. PubMed ID: 25261525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements.
    Verheust C; Fornelos N; Mahillon J
    J Bacteriol; 2005 Mar; 187(6):1966-73. PubMed ID: 15743944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage-borne factors and host LexA regulate the lytic switch in phage GIL01.
    Fornelos N; Bamford JK; Mahillon J
    J Bacteriol; 2011 Nov; 193(21):6008-19. PubMed ID: 21890699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group.
    Gillis A; Mahillon J
    Appl Environ Microbiol; 2014 Jul; 80(14):4138-52. PubMed ID: 24795369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spontaneous bacteriophage induction in Bacillus thuringiensis].
    Besaeva SG; Mikhaĭlov AA; Petrova TM; Tur AI; Bystrova EV
    Mikrobiologiia; 1987; 56(5):816-8. PubMed ID: 3448468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future.
    Gillis A; Mahillon J
    Viruses; 2014 Jul; 6(7):2623-72. PubMed ID: 25010767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis.
    Pavlin A; Lovše A; Bajc G; Otoničar J; Kujović A; Lengar Ž; Gutierrez-Aguirre I; Kostanjšek R; Konc J; Fornelos N; Butala M
    Commun Biol; 2022 Nov; 5(1):1286. PubMed ID: 36434275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rap-Phr Systems from Plasmids pAW63 and pHT8-1 Act Together To Regulate Sporulation in the Bacillus thuringiensis Serovar kurstaki HD73 Strain.
    Cardoso P; Fazion F; Perchat S; Buisson C; Vilas-Bôas G; Lereclus D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680861
    [No Abstract]   [Full Text] [Related]  

  • 9. Five unique temperate phages from a polylysogenic strain of Bacillus thuringiensis subsp. aizawai.
    Reynolds RB; Reddy A; Thorne CB
    J Gen Microbiol; 1988 Jun; 134(6):1577-85. PubMed ID: 3221199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rap Protein Paralogs of Bacillus thuringiensis: a Multifunctional and Redundant Regulatory Repertoire for the Control of Collective Functions.
    Gastélum G; de la Torre M; Rocha J
    J Bacteriol; 2020 Feb; 202(6):. PubMed ID: 31871034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis.
    Verheust C; Jensen G; Mahillon J
    Microbiology (Reading); 2003 Aug; 149(Pt 8):2083-2092. PubMed ID: 12904548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis.
    Gillis A; Fayad N; Makart L; Bolotin A; Sorokin A; Kallassy M; Mahillon J
    FEMS Microbiol Rev; 2018 Nov; 42(6):829-856. PubMed ID: 30203090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Converting bacteriophage for sporulation and crystal formation in Bacillus thuringiensis.
    Perlak FJ; Mendelsohn CL; Thorne CB
    J Bacteriol; 1979 Nov; 140(2):699-706. PubMed ID: 500567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plasmid-borne Rap-Phr system regulates sporulation of Bacillus thuringiensis in insect larvae.
    Fazion F; Perchat S; Buisson C; Vilas-Bôas G; Lereclus D
    Environ Microbiol; 2018 Jan; 20(1):145-155. PubMed ID: 28967209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection.
    Verplaetse E; Slamti L; Gohar M; Lereclus D
    mBio; 2015 Apr; 6(3):e00138-15. PubMed ID: 25922389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of Bacillus thuringiensis Simulant Strains Suitable for Environmental Release.
    Park S; Kim C; Lee D; Song DH; Cheon KC; Lee HS; Kim SJ; Kim JC; Lee SY
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28258144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study of lysogeny in Bacillus thuringiensis and B. cereus].
    Ackermann HW; Smirnoff WA
    Can J Microbiol; 1978 Jul; 24(7):818-26. PubMed ID: 98223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue.
    Fornelos N; Browning DF; Pavlin A; Podlesek Z; Hodnik V; Salas M; Butala M
    Nucleic Acids Res; 2018 Oct; 46(18):9432-9443. PubMed ID: 30053203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Bacillus thuringiensis bacteriophage interference].
    Azizbekian RR
    Genetika; 1981; 17(10):1745-52. PubMed ID: 7198072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biology of two lysogenic phages from Bacillus thuringiensis MZ1].
    Liao W; Sun F; Song SY; Shi W; Pang Y
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):92-7. PubMed ID: 17436632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.