These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25261758)
1. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. Lladó S; Covino S; Solanas AM; Petruccioli M; D'annibale A; Viñas M J Hazard Mater; 2015; 283():35-43. PubMed ID: 25261758 [TBL] [Abstract][Full Text] [Related]
2. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. Lladó S; Covino S; Solanas AM; Viñas M; Petruccioli M; D'annibale A J Hazard Mater; 2013 Mar; 248-249():407-14. PubMed ID: 23416485 [TBL] [Abstract][Full Text] [Related]
3. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Viñas M; Sabaté J; Espuny MJ; Solanas AM Appl Environ Microbiol; 2005 Nov; 71(11):7008-18. PubMed ID: 16269736 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the efficiency of in situ bioremediation techniques in a creosote polluted soil: change in bacterial community. Simarro R; González N; Bautista LF; Molina MC J Hazard Mater; 2013 Nov; 262():158-67. PubMed ID: 24025312 [TBL] [Abstract][Full Text] [Related]
5. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
6. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
8. Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. Covino S; Fabianová T; Křesinová Z; Čvančarová M; Burianová E; Filipová A; Vořísková J; Baldrian P; Cajthaml T J Hazard Mater; 2016 Jan; 301():17-26. PubMed ID: 26342147 [TBL] [Abstract][Full Text] [Related]
9. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
10. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil. Pelaez AI; Lores I; Sotres A; Mendez-Garcia C; Fernandez-Velarde C; Santos JA; Gallego JL; Sanchez J Environ Pollut; 2013 Oct; 181():190-9. PubMed ID: 23867700 [TBL] [Abstract][Full Text] [Related]
11. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
12. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils. Cébron A; Beguiristain T; Bongoua-Devisme J; Denonfoux J; Faure P; Lorgeoux C; Ouvrard S; Parisot N; Peyret P; Leyval C Environ Sci Pollut Res Int; 2015 Sep; 22(18):13724-38. PubMed ID: 25616383 [TBL] [Abstract][Full Text] [Related]
13. Investigating the mycobiome of the Holcomb Creosote Superfund Site. Czaplicki LM; Redfern LK; Cooper EM; Ferguson PL; Vilgalys R; Gunsch CK Chemosphere; 2020 Aug; 252():126208. PubMed ID: 32229362 [TBL] [Abstract][Full Text] [Related]
15. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Wang L; Li F; Zhan Y; Zhu L Environ Sci Pollut Res Int; 2016 Jul; 23(14):14451-61. PubMed ID: 27068902 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Chikere CB; Surridge K; Okpokwasili GC; Cloete TE Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988 [TBL] [Abstract][Full Text] [Related]
17. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area. Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701 [TBL] [Abstract][Full Text] [Related]
18. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
19. Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Zafra G; Absalón ÁE; Anducho-Reyes MÁ; Fernandez FJ; Cortés-Espinosa DV Chemosphere; 2017 Apr; 172():120-126. PubMed ID: 28063314 [TBL] [Abstract][Full Text] [Related]
20. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Bourceret A; Cébron A; Tisserant E; Poupin P; Bauda P; Beguiristain T; Leyval C Microb Ecol; 2016 Apr; 71(3):711-24. PubMed ID: 26440298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]