BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 25261762)

  • 21. Products of steel slags an opportunity to save natural resources.
    Motz H; Geiseler J
    Waste Manag; 2001; 21(3):285-93. PubMed ID: 11280521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Phosphorus adsorption and regeneration of electric arc furnace steel slag as wetland medium].
    Zhai LH; He LS; Xi BD; Chen Y; Meng R; Huo SL; Liu HL
    Huan Jing Ke Xue; 2008 Dec; 29(12):3410-4. PubMed ID: 19256377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.
    Qi G; Yue D; Fukushima M; Fukuchi S; Nie Y
    Bioresour Technol; 2012 Jan; 104():497-502. PubMed ID: 22130079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Steel slag: a waste industrial by-product as an alternative sustainable green building material in construction applications--an attempt for solid waste management.
    Pofale AD; Nadeem M
    J Environ Sci Eng; 2012 Jan; 54(1):140-6. PubMed ID: 23741870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the potential of steel slag waste for carbon sequestration through mineral carbonation: A comparative study of blast-furnace slag and ladle slag.
    Elyasi Gomari K; Rezaei Gomari S; Hughes D; Ahmed T
    J Environ Manage; 2024 Feb; 351():119835. PubMed ID: 38141347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reprocessing of metallurgical slag into materials for the building industry.
    Pioro LS; Pioro IL
    Waste Manag; 2004; 24(4):371-9. PubMed ID: 15081065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydration and Microstructure of Steel Slag as Cementitious Material and Fine Aggregate in Mortar.
    Jing W; Jiang J; Ding S; Duan P
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32998378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
    Berryman EJ; Williams-Jones AE; Migdisov AA
    J Environ Sci (China); 2015 Jan; 27():266-75. PubMed ID: 25597686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.).
    Gwon HS; Khan MI; Alam MA; Das S; Kim PJ
    J Hazard Mater; 2018 Jul; 353():236-243. PubMed ID: 29674098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.
    Pasetto M; Baldo N
    J Hazard Mater; 2010 Sep; 181(1-3):938-48. PubMed ID: 20566237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of the sintering behaviour of Waelz slag from electric arc furnace (EAF) dust recycling for use in the clay ceramics industry.
    Quijorna N; de Pedro M; Romero M; Andrés A
    J Environ Manage; 2014 Jan; 132():278-86. PubMed ID: 24321287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.
    Qiu L; Wang G; Zhang S; Yang Z; Li Y
    Water Sci Technol; 2012; 65(6):1048-53. PubMed ID: 22378001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental impacts of asphalt mixes with electric arc furnace steel slag.
    Milačič R; Zuliani T; Oblak T; Mladenovič A; Ančar JŠ
    J Environ Qual; 2011; 40(4):1153-61. PubMed ID: 21712585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steel slag quality control for road construction aggregates and its environmental impact: case study of Vietnamese steel industry-leaching of heavy metals from steel-making slag.
    Nguyen LH; Nguyen TD; Tran TVN; Nguyen DL; Tran HS; Nguyen TL; Nguyen TH; Nguyen HG; Nguyen TP; Nguyen NT; Isawa T; Ta Y; Sato R
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):41983-41991. PubMed ID: 34564812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).
    Radić S; Crnojević H; Sandev D; Jelić S; Sedlar Z; Glavaš K; Pevalek-Kozlina B
    Acta Biol Hung; 2013 Dec; 64(4):490-9. PubMed ID: 24275594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.
    Navarro C; Díaz M; Villa-García MA
    Environ Sci Technol; 2010 Jul; 44(14):5383-8. PubMed ID: 20568743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of steel slag for Portland cement clinker production.
    Tsakiridis PE; Papadimitriou GD; Tsivilis S; Koroneos C
    J Hazard Mater; 2008 Apr; 152(2):805-11. PubMed ID: 17869414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials.
    Zhang Y; Zhang S; Ni W; Yan Q; Gao W; Li Y
    Chemosphere; 2019 May; 223():117-123. PubMed ID: 30772590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.
    Mattila HP; Zevenhoven R
    ChemSusChem; 2014 Mar; 7(3):903-13. PubMed ID: 24578147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential utilization of slag generated from iron- and steelmaking industries: a review.
    Zhang X; Chen J; Jiang J; Li J; Tyagi RD; Surampalli RY
    Environ Geochem Health; 2020 May; 42(5):1321-1334. PubMed ID: 31664635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.