BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 25261935)

  • 1. Genome-wide analysis of noncoding regulatory mutations in cancer.
    Weinhold N; Jacobsen A; Schultz N; Sander C; Lee W
    Nat Genet; 2014 Nov; 46(11):1160-5. PubMed ID: 25261935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered TERT promoter and other genomic regulatory elements: occurrence and impact.
    Heidenreich B; Kumar R
    Int J Cancer; 2017 Sep; 141(5):867-876. PubMed ID: 28407294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types.
    Fredriksson NJ; Ny L; Nilsson JA; Larsson E
    Nat Genet; 2014 Dec; 46(12):1258-63. PubMed ID: 25383969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of SDHD promoter mutations in various types of melanoma.
    Scholz SL; Horn S; Murali R; Möller I; Sucker A; Sondermann W; Stiller M; Schilling B; Livingstone E; Zimmer L; Reis H; Metz CH; Zeschnigk M; Paschen A; Steuhl KP; Schadendorf D; Westekemper H; Griewank KG
    Oncotarget; 2015 Sep; 6(28):25868-82. PubMed ID: 26327518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pan-Cancer Study of Somatic TERT Promoter Mutations and Amplification in 30,773 Tumors Profiled by Clinical Genomic Sequencing.
    Gupta S; Vanderbilt CM; Lin YT; Benhamida JK; Jungbluth AA; Rana S; Momeni-Boroujeni A; Chang JC; Mcfarlane T; Salazar P; Mullaney K; Middha S; Zehir A; Gopalan A; Bale TA; Ganly I; Arcila ME; Benayed R; Berger MF; Ladanyi M; Dogan S
    J Mol Diagn; 2021 Feb; 23(2):253-263. PubMed ID: 33285287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer.
    Lowdon RF; Wang T
    PLoS One; 2017; 12(3):e0174032. PubMed ID: 28333948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional annotation of noncoding mutations in cancer.
    Umer HM; Smolinska K; Komorowski J; Wadelius C
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34282050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OncoBase: a platform for decoding regulatory somatic mutations in human cancers.
    Li X; Shi L; Wang Y; Zhong J; Zhao X; Teng H; Shi X; Yang H; Ruan S; Li M; Sun ZS; Zhan Q; Mao F
    Nucleic Acids Res; 2019 Jan; 47(D1):D1044-D1055. PubMed ID: 30445567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OncoCis: annotation of cis-regulatory mutations in cancer.
    Perera D; Chacon D; Thoms JA; Poulos RC; Shlien A; Beck D; Campbell PJ; Pimanda JE; Wong JW
    Genome Biol; 2014; 15(10):485. PubMed ID: 25298093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations.
    Lochovsky L; Zhang J; Fu Y; Khurana E; Gerstein M
    Nucleic Acids Res; 2015 Sep; 43(17):8123-34. PubMed ID: 26304545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second call for pan-cancer analysis.
    Nat Genet; 2014 Dec; 46(12):1251. PubMed ID: 25418742
    [No Abstract]   [Full Text] [Related]  

  • 12. Systematic Screening of Promoter Regions Pinpoints Functional Cis-Regulatory Mutations in a Cutaneous Melanoma Genome.
    Poulos RC; Thoms JA; Shah A; Beck D; Pimanda JE; Wong JW
    Mol Cancer Res; 2015 Aug; 13(8):1218-26. PubMed ID: 26082173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent somatic mutations in regulatory regions of human cancer genomes.
    Melton C; Reuter JA; Spacek DV; Snyder M
    Nat Genet; 2015 Jul; 47(7):710-6. PubMed ID: 26053494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly recurrent TERT promoter mutations in human melanoma.
    Huang FW; Hodis E; Xu MJ; Kryukov GV; Chin L; Garraway LA
    Science; 2013 Feb; 339(6122):957-9. PubMed ID: 23348506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and computational analysis of gene regulatory elements.
    Taher L; Narlikar L; Ovcharenko I
    Cold Spring Harb Protoc; 2015 Jan; 2015(1):pdb.top083642. PubMed ID: 25561628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telomerase reverse transcriptase promoter alterations across cancer types as detected by next-generation sequencing: A clinical and molecular analysis of 423 patients.
    Schwaederle M; Krishnamurthy N; Daniels GA; Piccioni DE; Kesari S; Fanta PT; Schwab RB; Patel SP; Parker BA; Kurzrock R
    Cancer; 2018 Mar; 124(6):1288-1296. PubMed ID: 29211306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the exome: the role of non-coding somatic mutations in cancer.
    Piraino SW; Furney SJ
    Ann Oncol; 2016 Feb; 27(2):240-8. PubMed ID: 26598542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.