BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25261965)

  • 1. Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury.
    Schmitt HM; Pelzel HR; Schlamp CL; Nickells RW
    Mol Neurodegener; 2014 Sep; 9():39. PubMed ID: 25261965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting HDAC3 Activity with RGFP966 Protects Against Retinal Ganglion Cell Nuclear Atrophy and Apoptosis After Optic Nerve Injury.
    Schmitt HM; Schlamp CL; Nickells RW
    J Ocul Pharmacol Ther; 2018 Apr; 34(3):260-273. PubMed ID: 29211617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of HDACs in optic nerve damage-induced nuclear atrophy of retinal ganglion cells.
    Schmitt HM; Schlamp CL; Nickells RW
    Neurosci Lett; 2016 Jun; 625():11-5. PubMed ID: 26733303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis.
    Pelzel HR; Schlamp CL; Nickells RW
    BMC Neurosci; 2010 May; 11():62. PubMed ID: 20504333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma.
    Schmitt HM; Grosser JA; Schlamp CL; Nickells RW
    Exp Eye Res; 2020 Nov; 200():108244. PubMed ID: 32971093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression.
    Schmitt HM; Fehrman RL; Maes ME; Yang H; Guo LW; Schlamp CL; Pelzel HR; Nickells RW
    Invest Ophthalmol Vis Sci; 2021 Aug; 62(10):14. PubMed ID: 34398198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
    Choudhury S; Liu Y; Clark AF; Pang IH
    Mol Neurodegener; 2015 Aug; 10():40. PubMed ID: 26306916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear atrophy of retinal ganglion cells precedes the bax-dependent stage of apoptosis.
    Janssen KT; Mac Nair CE; Dietz JA; Schlamp CL; Nickells RW
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1805-15. PubMed ID: 23422829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing of Fem1cR3 gene expression in the DBA/2J mouse precedes retinal ganglion cell death and is associated with histone deacetylase activity.
    Pelzel HR; Schlamp CL; Waclawski M; Shaw MK; Nickells RW
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1428-35. PubMed ID: 22297488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma.
    Joly S; Pernet V
    J Neurochem; 2016 Aug; 138(4):571-86. PubMed ID: 27309795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury.
    Syc-Mazurek SB; Fernandes KA; Wilson MP; Shrager P; Libby RT
    Mol Neurodegener; 2017 Oct; 12(1):71. PubMed ID: 28969695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage.
    Donahue RJ; Maes ME; Grosser JA; Nickells RW
    Mol Neurobiol; 2020 Feb; 57(2):1070-1084. PubMed ID: 31673950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone Deacetylases Contribute to Excitotoxicity-Triggered Degeneration of Retinal Ganglion Cells In Vivo.
    Schlüter A; Aksan B; Fioravanti R; Valente S; Mai A; Mauceri D
    Mol Neurobiol; 2019 Dec; 56(12):8018-8034. PubMed ID: 31161423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AAV2-Mediated Transduction of the Mouse Retina After Optic Nerve Injury.
    Nickells RW; Schmitt HM; Maes ME; Schlamp CL
    Invest Ophthalmol Vis Sci; 2017 Dec; 58(14):6091-6104. PubMed ID: 29204649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways.
    Mac Nair CE; Schlamp CL; Montgomery AD; Shestopalov VI; Nickells RW
    J Neuroinflammation; 2016 Apr; 13(1):93. PubMed ID: 27126275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. JNK2 and JNK3 are major regulators of axonal injury-induced retinal ganglion cell death.
    Fernandes KA; Harder JM; Fornarola LB; Freeman RS; Clark AF; Pang IH; John SW; Libby RT
    Neurobiol Dis; 2012 May; 46(2):393-401. PubMed ID: 22353563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma.
    Li L; He S; Liu Y; Yorio T; Ellis DZ
    Invest Ophthalmol Vis Sci; 2021 Aug; 62(10):17. PubMed ID: 34406331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice.
    Yungher BJ; Ribeiro M; Park KK
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1743-1750. PubMed ID: 28324115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of histone deacetylases 1 and 3 protects injured retinal ganglion cells.
    Chindasub P; Lindsey JD; Duong-Polk K; Leung CK; Weinreb RN
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):96-102. PubMed ID: 23197683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BAX activation in mouse retinal ganglion cells occurs in two temporally and mechanistically distinct steps.
    Maes ME; Donahue RJ; Schlamp CL; Marola OJ; Libby RT; Nickells RW
    Mol Neurodegener; 2023 Sep; 18(1):67. PubMed ID: 37752598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.