These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25262339)

  • 1. A comparison of the upper limb movement kinematics utilized by children playing virtual and real table tennis.
    Bufton A; Campbell A; Howie E; Straker L
    Hum Mov Sci; 2014 Dec; 38():84-93. PubMed ID: 25262339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Children with developmental coordination disorder play active virtual reality games differently than children with typical development.
    Gonsalves L; Campbell A; Jensen L; Straker L
    Phys Ther; 2015 Mar; 95(3):360-8. PubMed ID: 25301965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHILDREN'S MOVEMENT SKILLS WHEN PLAYING ACTIVE VIDEO GAMES.
    Hulteen RM; Johnson TM; Ridgers ND; Mellecker RR; Barnett LM
    Percept Mot Skills; 2015 Dec; 121(3):767-90. PubMed ID: 26654991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinematics of table tennis racquet: differences between topspin strokes.
    Bańkosz Z; Winiarski S
    J Sports Med Phys Fitness; 2017 Mar; 57(3):202-213. PubMed ID: 26842869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinematic differences between skill levels in the squash forehand drive, volley and drop strokes.
    Williams BK; Sanders RH; Ryu JH; Graham-Smith P; Sinclair PJ
    J Sports Sci; 2020 Jul; 38(13):1550-1559. PubMed ID: 32292100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation.
    Parry I; Carbullido C; Kawada J; Bagley A; Sen S; Greenhalgh D; Palmieri T
    Burns; 2014 Aug; 40(5):852-9. PubMed ID: 24296065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does playing a sports active video game improve young children's ball skill competence?
    Johnson TM; Ridgers ND; Hulteen RM; Mellecker RR; Barnett LM
    J Sci Med Sport; 2016 May; 19(5):432-6. PubMed ID: 26050626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of scaling task constraints on emergent behaviours in children's racquet sports performance.
    Fitzpatrick A; Davids K; Stone JA
    Hum Mov Sci; 2018 Apr; 58():80-87. PubMed ID: 29353094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand.
    Iino Y; Kojima T
    J Sports Sci; 2016; 34(8):721-9. PubMed ID: 26208598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinematic differences between accurate and inaccurate squash forehand drives for athletes of different skill levels.
    Williams BK; Sanders RH; Ryu JH; Graham-Smith P; Sinclair PJ
    J Sports Sci; 2020 May; 38(10):1115-1123. PubMed ID: 32223529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steps for arm and trunk actions of overhead forehand stroke used in badminton games across skill levels.
    Wang J; Liu W; Moffit J
    Percept Mot Skills; 2009 Aug; 109(1):177-86. PubMed ID: 19831099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Upper Limb Kinematics of Forehand and Backhand Topspin Drives with IMU Sensors in Wheelchair and Able-Bodied Table Tennis Players.
    Yam JW; Pan JW; Kong PW
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring children's movement characteristics during virtual reality video game play.
    Levac D; Pierrynowski MR; Canestraro M; Gurr L; Leonard L; Neeley C
    Hum Mov Sci; 2010 Dec; 29(6):1023-38. PubMed ID: 20724014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender Differences in Kinematic Parameters of Topspin Forehand and Backhand in Table Tennis.
    Bańkosz Z; Winiarski S; Malagoli Lanzoni I
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32784440
    [No Abstract]   [Full Text] [Related]  

  • 15. The contribution of upper limb and total body movement to adolescents' energy expenditure whilst playing Nintendo Wii.
    Graves LE; Ridgers ND; Stratton G
    Eur J Appl Physiol; 2008 Nov; 104(4):617-23. PubMed ID: 18607619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sony PlayStation EyeToy elicits higher levels of movement than the Nintendo Wii: implications for stroke rehabilitation.
    Neil A; Ens S; Pelletier R; Jarus T; Rand D
    Eur J Phys Rehabil Med; 2013 Feb; 49(1):13-21. PubMed ID: 23172403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heart Rate and Liking During "Kinect Boxing" Versus "Wii Boxing": The Potential for Enjoyable Vigorous Physical Activity Videogames.
    Sanders GJ; Peacock CA; Barkley JE; Gish B; Brock S; Volpenhein J
    Games Health J; 2015 Aug; 4(4):265-70. PubMed ID: 26182213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.
    Scheer KS; Siebrant SM; Brown GA; Shaw BS; Shaw I
    Int J Exerc Sci; 2014; 7(1):22-32. PubMed ID: 27182399
    [No Abstract]   [Full Text] [Related]  

  • 19. Table Tennis Prosthetic Hand Controlled Based on Distance Measurement Using a ToF Sensor.
    Oda T; Yoshikawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4670-4673. PubMed ID: 34892255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and use of an observation tool for active gaming and movement (OTAGM) to measure children's movement skill components during active video game play.
    Rosa RL; Ridgers ND; Barnett LM
    Percept Mot Skills; 2013 Dec; 117(3):935-49. PubMed ID: 24665809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.