These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 25262360)

  • 1. The complex task of choosing a de novo assembly: lessons from fungal genomes.
    Gallo JE; Muñoz JF; Misas E; McEwen JG; Clay OK
    Comput Biol Chem; 2014 Dec; 53 Pt A():97-107. PubMed ID: 25262360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable Genome Assembly through Parallel de Bruijn Graph Construction for Multiple k-mers.
    Mahadik K; Wright C; Kulkarni M; Bagchi S; Chaterji S
    Sci Rep; 2019 Oct; 9(1):14882. PubMed ID: 31619717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
    Haznedaroglu BZ; Reeves D; Rismani-Yazdi H; Peccia J
    BMC Bioinformatics; 2012 Jul; 13():170. PubMed ID: 22808927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes.
    Haridas S; Breuill C; Bohlmann J; Hsiang T
    J Microbiol Methods; 2011 Sep; 86(3):368-75. PubMed ID: 21749903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positional bias in variant calls against draft reference assemblies.
    Briskine RV; Shimizu KK
    BMC Genomics; 2017 Mar; 18(1):263. PubMed ID: 28351369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo assembly of bacterial genomes with repetitive DNA regions by dnaasm application.
    Kuśmirek W; Nowak R
    BMC Bioinformatics; 2018 Jul; 19(1):273. PubMed ID: 30021513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine de novo sequencing of a fungal genome using only SOLiD short read data: verification on Aspergillus oryzae RIB40.
    Umemura M; Koyama Y; Takeda I; Hagiwara H; Ikegami T; Koike H; Machida M
    PLoS One; 2013; 8(5):e63673. PubMed ID: 23667655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome Sequencing.
    Yoshinaga Y; Daum C; He G; O'Malley R
    Methods Mol Biol; 2018; 1775():37-52. PubMed ID: 29876807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved assembly of noisy long reads by k-mer validation.
    Carvalho AB; Dupim EG; Goldstein G
    Genome Res; 2016 Dec; 26(12):1710-1720. PubMed ID: 27831497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
    Abbas MM; Malluhi QM; Balakrishnan P
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.