BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25262394)

  • 21. Recovery of phosphorus from municipal wastewater treatment sludge through bioleaching using Acidithiobacillus thiooxidans.
    Lee Y; Sethurajan M; van de Vossenberg J; Meers E; van Hullebusch ED
    J Environ Manage; 2020 Sep; 270():110818. PubMed ID: 32507739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans.
    Mikoda B; Potysz A; Kmiecik E
    J Environ Manage; 2019 Apr; 236():436-445. PubMed ID: 30769253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans.
    Liu HL; Chen BY; Lan YW; Cheng YC
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):414-20. PubMed ID: 12719934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation of an extremely acidophilic and highly efficient strain Acidithiobacillus sp. for chalcopyrite bioleaching.
    Feng S; Yang H; Xin Y; Zhang L; Kang W; Wang W
    J Ind Microbiol Biotechnol; 2012 Nov; 39(11):1625-35. PubMed ID: 22872498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioleaching of ultramafic tailings by acidithiobacillus spp. for CO2 sequestration.
    Power IM; Dipple GM; Southam G
    Environ Sci Technol; 2010 Jan; 44(1):456-62. PubMed ID: 19950896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP; Cama J; Martínez M; Giménez J
    J Hazard Mater; 2009 Nov; 171(1-3):965-72. PubMed ID: 19628332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioleaching for detoxification of waste flotation tailings: Relationship between EPS substances and bioleaching behavior.
    Ye M; Liang J; Liao X; Li L; Feng X; Qian W; Zhou S; Sun S
    J Environ Manage; 2021 Feb; 279():111795. PubMed ID: 33338773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.
    Chen S; Yang Y; Liu C; Dong F; Liu B
    Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioleaching of sewage sludge for copper extraction using Acidithiobacillus thiooxidans: Optimization and ecological risk assessment.
    Rastegar SO; Samadi A; Ahmadnezhad P; Nazari T
    Chemosphere; 2024 Apr; 353():141466. PubMed ID: 38364921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.
    Duquesne K; Lebrun S; Casiot C; Bruneel O; Personné JC; Leblanc M; Elbaz-Poulichet F; Morin G; Bonnefoy V
    Appl Environ Microbiol; 2003 Oct; 69(10):6165-73. PubMed ID: 14532077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The wide distribution of an extremely thermoacidophilic microorganism in the copper mine at ambient temperature and under acidic condition and its significance in bioleaching of a chalcopyrite concentrate.
    Kazemi MJ; Kargar M; Nowroozi J; Akhavan Sepahi A; Doosti A; Manafi Z
    Rev Argent Microbiol; 2019; 51(1):56-65. PubMed ID: 29954620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel integration strategy for enhancing chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter.
    Feng S; Yang H; Zhan X; Wang W
    Bioresour Technol; 2014 Jun; 161():371-8. PubMed ID: 24727697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus.
    Zhang G; Chao X; Guo P; Cao J; Yang C
    J Hazard Mater; 2015; 283():117-22. PubMed ID: 25265593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.