These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25262456)

  • 1. Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption.
    Lee SY; Jung KH; Lee JE; Lee KA; Lee SH; Lee JY; Lee JK; Jeong JT; Lee SY
    Bioresour Technol; 2014 Nov; 172():449-452. PubMed ID: 25262456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Soluble Strontium via Incorporation into Biogenic Carbonate Minerals by Halophilic Bacterium Bacillus sp. Strain TK2d in a Highly Saline Solution.
    Horiike T; Dotsuta Y; Nakano Y; Ochiai A; Utsunomiya S; Ohnuki T; Yamashita M
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of radionuclide bio-decontamination by screening highly efficient microalgae for Sr biomineralization.
    Wang C; Lee KA; Choi E; Lee KY; Lee SY; Jung KH; Park J
    Lab Chip; 2018 Jul; 18(15):2270-2278. PubMed ID: 29979459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.
    Achal V; Pan X; Zhang D
    Chemosphere; 2012 Oct; 89(6):764-8. PubMed ID: 22850277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi.
    Sun S; Liu M; Nie X; Dong F; Hu W; Tan D; Huo T
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22446-22454. PubMed ID: 29368204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil.
    Li Q; Csetenyi L; Paton GI; Gadd GM
    Environ Microbiol; 2015 Aug; 17(8):3082-97. PubMed ID: 26119362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological removal of cationic fission products from nuclear wastewater.
    Ngwenya N; Chirwa EM
    Water Sci Technol; 2011; 63(1):124-8. PubMed ID: 21245563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of zirconium phosphate by a Serratia sp.: a benign system for the removal of radionuclides from aqueous flows.
    Mennan C; Paterson-Beedle M; Macaskie LE
    Biotechnol Lett; 2010 Oct; 32(10):1419-27. PubMed ID: 20495949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.
    Woodworth BD; Mead RL; Nichols CN; Kolling DRJ
    Bioresour Technol; 2015 Mar; 179():159-164. PubMed ID: 25543540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration.
    Zhu X; Logan BE
    Bioresour Technol; 2014 May; 159():24-9. PubMed ID: 24632437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite.
    Lalhmunsiama ; Tiwari D; Lee SM
    J Environ Radioact; 2015 Sep; 147():76-84. PubMed ID: 26048059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Method to Screen for Radiostrontium in Water by Ion Exchange Chromatography.
    Nguyen DM; Moody WA; Williamson JA
    Health Phys; 2019 Jun; 116(6):771-775. PubMed ID: 30844900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of 137cesium and 90strontium from solutions and low-level nuclear waste by Vetiveria zizanoides.
    Singh S; Eapen S; Thorat V; Kaushik CP; Raj K; D'Souza SF
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):306-11. PubMed ID: 17257679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly stable and magnetically separable alginate/Fe
    Hong HJ; Jeong HS; Kim BG; Hong J; Park IS; Ryu T; Chung KS; Kim H; Ryu J
    Chemosphere; 2016 Dec; 165():231-238. PubMed ID: 27657815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater.
    Faghihian H; Marageh MG; Kazemian H
    Appl Radiat Isot; 1999 Apr; 50(4):655-60. PubMed ID: 10101831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive (90)Sr(2+) and (137)Cs(+) ions and oils.
    Wen T; Zhao Z; Shen C; Li J; Tan X; Zeb A; Wang X; Xu AW
    Sci Rep; 2016 Feb; 6():20920. PubMed ID: 26865116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review and test of predictive models for the bioaccumulation of radiostrontium in fish.
    Smith JT; Sasina NV; Kryshev AI; Belova NV; Kudelsky AV
    J Environ Radioact; 2009 Nov; 100(11):950-4. PubMed ID: 19656592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization.
    Kim H; Son HM; Lee HK
    Chemosphere; 2022 Feb; 288(Pt 2):132586. PubMed ID: 34718026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive transport modeling of ⁹⁰Sr sorption in reactive sandpacks.
    Yin J; Jeen SW; Lee DR; Mayer KU
    J Hazard Mater; 2014 Sep; 280():685-95. PubMed ID: 25232651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel effect of combining microorganisms and graphene oxide for solidifying simulated nuclides strontium.
    Zhou L; Chen T; He G; Jin X; Liu S; Lian J; Yang F; Li X; Zhang J; He X; Zhu W
    J Environ Radioact; 2021 Feb; 227():106507. PubMed ID: 33321301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.