BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25262481)

  • 1. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination.
    Erdim E; Badireddy AR; Wiesner MR
    J Hazard Mater; 2015; 283():80-8. PubMed ID: 25262481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water disinfection processes change the cytotoxicity of C
    Zhang Q; Wang M; Gu C; Zhang C
    Water Res; 2019 Oct; 163():114867. PubMed ID: 31330401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.
    Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR
    Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions.
    Hwang YS; Li Q
    Environ Sci Technol; 2010 Apr; 44(8):3008-13. PubMed ID: 20337472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports.
    Henry TB; Petersen EJ; Compton RN
    Curr Opin Biotechnol; 2011 Aug; 22(4):533-7. PubMed ID: 21719272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase.
    Li Y; Niu J; Shang E; Crittenden JC
    Environ Sci Technol; 2015 Jan; 49(2):965-73. PubMed ID: 25536151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection?
    Manjón F; Santana-Magaña M; García-Fresnadillo D; Orellana G
    Photochem Photobiol Sci; 2014 Feb; 13(2):397-406. PubMed ID: 24395285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroethene dehalogenation with ultrasonically produced air-stable nano iron.
    Tiehm A; Krassnitzer S; Koltypin Y; Gedanken A
    Ultrason Sonochem; 2009 Jun; 16(5):617-21. PubMed ID: 19233708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2.
    Yamakoshi Y; Umezawa N; Ryu A; Arakane K; Miyata N; Goda Y; Masumizu T; Nagano T
    J Am Chem Soc; 2003 Oct; 125(42):12803-9. PubMed ID: 14558828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation.
    Chae SR; Watanabe Y; Wiesner MR
    Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light energy and reducing agents on C60-mediated photosensitizing reactions.
    Quinones M; Zhang Y; Riascos P; Hwang HM; Aker WG; He X; Gao R
    Photochem Photobiol; 2014; 90(2):374-9. PubMed ID: 24188530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.