These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 25262566)
1. Brachypodium: a promising hub between model species and cereals. Girin T; David LC; Chardin C; Sibout R; Krapp A; Ferrario-Méry S; Daniel-Vedele F J Exp Bot; 2014 Oct; 65(19):5683-96. PubMed ID: 25262566 [TBL] [Abstract][Full Text] [Related]
2. Update on the genomics and basic biology of Brachypodium: International Brachypodium Initiative (IBI). Catalan P; Chalhoub B; Chochois V; Garvin DF; Hasterok R; Manzaneda AJ; Mur LA; Pecchioni N; Rasmussen SK; Vogel JP; Voxeur A Trends Plant Sci; 2014 Jul; 19(7):414-8. PubMed ID: 24917149 [TBL] [Abstract][Full Text] [Related]
3. Unlocking Triticeae genomics to sustainably feed the future. Mochida K; Shinozaki K Plant Cell Physiol; 2013 Dec; 54(12):1931-50. PubMed ID: 24204022 [TBL] [Abstract][Full Text] [Related]
4. Brachypodium distachyon-Cochliobolus sativus Pathosystem is a New Model for Studying Plant-Fungal Interactions in Cereal Crops. Zhong S; Ali S; Leng Y; Wang R; Garvin DF Phytopathology; 2015 Apr; 105(4):482-9. PubMed ID: 25423068 [TBL] [Abstract][Full Text] [Related]
5. Brachypodium as an emerging model for cereal-pathogen interactions. Fitzgerald TL; Powell JJ; Schneebeli K; Hsia MM; Gardiner DM; Bragg JN; McIntyre CL; Manners JM; Ayliffe M; Watt M; Vogel JP; Henry RJ; Kazan K Ann Bot; 2015 Apr; 115(5):717-31. PubMed ID: 25808446 [TBL] [Abstract][Full Text] [Related]
6. Application of Brachypodium to the genetic improvement of wheat roots. Chochois V; Vogel JP; Watt M J Exp Bot; 2012 May; 63(9):3467-74. PubMed ID: 22467408 [TBL] [Abstract][Full Text] [Related]
8. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. Hernando-Amado S; González-Calle V; Carbonero P; Barrero-Sicilia C BMC Plant Biol; 2012 Nov; 12():202. PubMed ID: 23126376 [TBL] [Abstract][Full Text] [Related]
9. Exploiting the Brachypodium Tool Box in cereal and grass research. Mur LAJ; Allainguillaume J; Catalán P; Hasterok R; Jenkins G; Lesniewska K; Thomas I; Vogel J New Phytol; 2011 Jul; 191(2):334-347. PubMed ID: 21623796 [TBL] [Abstract][Full Text] [Related]
10. Developmental and physiological responses of Brachypodium distachyon to fluctuating nitrogen availability. David LC; Girin T; Fleurisson E; Phommabouth E; Mahfoudhi A; Citerne S; Berquin P; Daniel-Vedele F; Krapp A; Ferrario-Méry S Sci Rep; 2019 Mar; 9(1):3824. PubMed ID: 30846873 [TBL] [Abstract][Full Text] [Related]
11. Determination of growth stages and metabolic profiles in Brachypodium distachyon for comparison of developmental context with Triticeae crops. Onda Y; Hashimoto K; Yoshida T; Sakurai T; Sawada Y; Hirai MY; Toyooka K; Mochida K; Shinozaki K Proc Biol Sci; 2015 Jul; 282(1811):. PubMed ID: 26156770 [TBL] [Abstract][Full Text] [Related]
12. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae. Mameaux S; Cockram J; Thiel T; Steuernagel B; Stein N; Taudien S; Jack P; Werner P; Gray JC; Greenland AJ; Powell W Plant Biotechnol J; 2012 Jan; 10(1):67-82. PubMed ID: 21838715 [TBL] [Abstract][Full Text] [Related]
13. Brachypodium distachyon as a Genetic Model System. Kellogg EA Annu Rev Genet; 2015; 49():1-20. PubMed ID: 26393966 [TBL] [Abstract][Full Text] [Related]
14. Programmed Cell Death in Developing Saada S; Solomon CU; Drea S Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445790 [TBL] [Abstract][Full Text] [Related]
15. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Bossolini E; Wicker T; Knobel PA; Keller B Plant J; 2007 Feb; 49(4):704-17. PubMed ID: 17270010 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide survey of alternative splicing in the grass Brachypodium distachyon: a emerging model biosystem for plant functional genomics. Sablok G; Gupta PK; Baek JM; Vazquez F; Min XJ Biotechnol Lett; 2011 Mar; 33(3):629-36. PubMed ID: 21107652 [TBL] [Abstract][Full Text] [Related]
17. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. He X; Qu B; Li W; Zhao X; Teng W; Ma W; Ren Y; Li B; Li Z; Tong Y Plant Physiol; 2015 Nov; 169(3):1991-2005. PubMed ID: 26371233 [TBL] [Abstract][Full Text] [Related]
18. Grain development in Brachypodium and other grasses: possible interactions between cell expansion, starch deposition, and cell-wall synthesis. Trafford K; Haleux P; Henderson M; Parker M; Shirley NJ; Tucker MR; Fincher GB; Burton RA J Exp Bot; 2013 Nov; 64(16):5033-47. PubMed ID: 24052531 [TBL] [Abstract][Full Text] [Related]
19. Genetic transformation of major cereal crops. Ji Q; Xu X; Wang K Int J Dev Biol; 2013; 57(6-8):495-508. PubMed ID: 24166432 [TBL] [Abstract][Full Text] [Related]
20. Senescence, nutrient remobilization, and yield in wheat and barley. Distelfeld A; Avni R; Fischer AM J Exp Bot; 2014 Jul; 65(14):3783-98. PubMed ID: 24470467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]