These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 25262814)

  • 21. Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism.
    Nam K; Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17851-6. PubMed ID: 25453082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase.
    Li CB; Ueno H; Watanabe R; Noji H; Komatsuzaki T
    Nat Commun; 2015 Dec; 6():10223. PubMed ID: 26678797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate release coupled to rotary motion of F1-ATPase.
    Okazaki K; Hummer G
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16468-73. PubMed ID: 24062450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases.
    al-Shawi MK; Parsonage D; Senior AE
    J Biol Chem; 1990 Mar; 265(8):4402-10. PubMed ID: 2137823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemomechanical coupling mechanism of F(1)-ATPase: catalysis and torque generation.
    Watanabe R; Noji H
    FEBS Lett; 2013 Apr; 587(8):1030-5. PubMed ID: 23395605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How subunit coupling produces the gamma-subunit rotary motion in F1-ATPase.
    Pu J; Karplus M
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1192-7. PubMed ID: 18216260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Essential Role of the ε Subunit for Reversible Chemo-Mechanical Coupling in F
    Watanabe R; Genda M; Kato-Yamada Y; Noji H
    Biophys J; 2018 Jan; 114(1):178-187. PubMed ID: 29320685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rotary catalysis of bovine mitochondrial F
    Kobayashi R; Ueno H; Li CB; Noji H
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1447-1456. PubMed ID: 31896579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F
    Czub J; Wieczór M; Prokopowicz B; Grubmüller H
    J Am Chem Soc; 2017 Mar; 139(11):4025-4034. PubMed ID: 28253614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.
    Nakanishi-Matsui M; Sekiya M; Futai M
    Biochim Biophys Acta; 2016 Feb; 1857(2):129-140. PubMed ID: 26589785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation.
    Iko Y; Tabata KV; Sakakihara S; Nakashima T; Noji H
    FEBS Lett; 2009 Oct; 583(19):3187-91. PubMed ID: 19733568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-driven stepwise rotation of FoF1-ATP synthase.
    Ueno H; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1333-8. PubMed ID: 15668386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the origin of the high energy-conversion efficiency of F
    Nam K; Karplus M
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15924-15929. PubMed ID: 31341091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphate release in F1-ATPase catalytic cycle follows ADP release.
    Watanabe R; Iino R; Noji H
    Nat Chem Biol; 2010 Nov; 6(11):814-20. PubMed ID: 20871600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The six steps of the complete F
    Sobti M; Ueno H; Noji H; Stewart AG
    Nat Commun; 2021 Aug; 12(1):4690. PubMed ID: 34344897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation.
    Nishizaka T; Oiwa K; Noji H; Kimura S; Muneyuki E; Yoshida M; Kinosita K
    Nat Struct Mol Biol; 2004 Feb; 11(2):142-8. PubMed ID: 14730353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion.
    Saita E; Suzuki T; Kinosita K; Yoshida M
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9626-31. PubMed ID: 26195785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature-sensitive reaction intermediate of F1-ATPase.
    Watanabe R; Iino R; Shimabukuro K; Yoshida M; Noji H
    EMBO Rep; 2008 Jan; 9(1):84-90. PubMed ID: 18064048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.