These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25262948)

  • 1. Optimization-based methodology for the development of wastewater facilities for energy and nutrient recovery.
    Puchongkawarin C; Gomez-Mont C; Stuckey DC; Chachuat B
    Chemosphere; 2015 Dec; 140():150-8. PubMed ID: 25262948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2016 Oct; 88(10):1279-98. PubMed ID: 27620091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility analysis of wastewater and solid waste systems for application in Indonesia.
    Kerstens SM; Leusbrock I; Zeeman G
    Sci Total Environ; 2015 Oct; 530-531():53-65. PubMed ID: 26026409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainability.
    Chang CC; DiGiovanni K; Mei Y; Wei L
    Water Environ Res; 2016 Oct; 88(10):1299-333. PubMed ID: 27620092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards energy neutral wastewater treatment: methodology and state of the art.
    Gao H; Scherson YD; Wells GF
    Environ Sci Process Impacts; 2014 May; 16(6):1223-46. PubMed ID: 24777396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment as development and decision support tool for wastewater resource recovery technology.
    Fang LL; Valverde-Pérez B; Damgaard A; Plósz BG; Rygaard M
    Water Res; 2016 Jan; 88():538-549. PubMed ID: 26540509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Socio-technical strategies and behavior change to increase the adoption and sustainability of wastewater resource recovery systems.
    Prouty C; Mohebbi S; Zhang Q
    Water Res; 2018 Jun; 137():107-119. PubMed ID: 29547774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential of sustainable algal biofuel production using wastewater resources.
    Pittman JK; Dean AP; Osundeko O
    Bioresour Technol; 2011 Jan; 102(1):17-25. PubMed ID: 20594826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2017 Oct; 89(10):1299-1314. PubMed ID: 28954661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technological options for the management of biosolids.
    Wang H; Brown SL; Magesan GN; Slade AH; Quintern M; Clinton PW; Payn TW
    Environ Sci Pollut Res Int; 2008 Jun; 15(4):308-17. PubMed ID: 18488261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Platforms for energy and nutrient recovery from domestic wastewater: A review.
    Batstone DJ; Hülsen T; Mehta CM; Keller J
    Chemosphere; 2015 Dec; 140():2-11. PubMed ID: 25455679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the scale of resource recovery for centralized and satellite wastewater treatment.
    Lee EJ; Criddle CS; Bobel P; Freyberg DL
    Environ Sci Technol; 2013 Oct; 47(19):10762-70. PubMed ID: 23930682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new planning and design paradigm to achieve sustainable resource recovery from wastewater.
    Guest JS; Skerlos SJ; Barnard JL; Beck MB; Daigger GT; Hilger H; Jackson SJ; Karvazy K; Kelly L; Macpherson L; Mihelcic JR; Pramanik A; Raskin L; Van Loosdrecht MC; Yeh D; Love NG
    Environ Sci Technol; 2009 Aug; 43(16):6126-30. PubMed ID: 19746702
    [No Abstract]   [Full Text] [Related]  

  • 14. Life-cycle impacts of shower water waste heat recovery: case study of an installation at a university sport facility in the UK.
    Ip K; She K; Adeyeye K
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19247-19258. PubMed ID: 29047063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic and environmental evaluation of nitrogen removal and recovery methods from wastewater.
    Lin Y; Guo M; Shah N; Stuckey DC
    Bioresour Technol; 2016 Sep; 215():227-238. PubMed ID: 27005785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental impact minimization of a total wastewater treatment network system from a life cycle perspective.
    Lim SR; Park JM
    J Environ Manage; 2009 Mar; 90(3):1454-62. PubMed ID: 19008032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the sustainability of small wastewater treatment systems: a composite indicator approach.
    Molinos-Senante M; Gómez T; Garrido-Baserba M; Caballero R; Sala-Garrido R
    Sci Total Environ; 2014 Nov; 497-498():607-617. PubMed ID: 25169875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of wastewater treatment alternatives for small communities: An analytic network process approach.
    Molinos-Senante M; Gómez T; Caballero R; Hernández-Sancho F; Sala-Garrido R
    Sci Total Environ; 2015 Nov; 532():676-87. PubMed ID: 26119382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new general methodology for incorporating physico-chemical transformations into multi-phase wastewater treatment process models.
    Lizarralde I; Fernández-Arévalo T; Brouckaert C; Vanrolleghem P; Ikumi DS; Ekama GA; Ayesa E; Grau P
    Water Res; 2015 May; 74():239-56. PubMed ID: 25746499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Values of decentralized systems that avoid investments in idle capacity within the wastewater sector: a theoretical justification.
    Wang S
    J Environ Manage; 2014 Apr; 136():68-75. PubMed ID: 24565878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.