BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 25263041)

  • 1. Biomechanical changes in the human cornea after transepithelial corneal crosslinking using iontophoresis.
    Lombardo M; Serrao S; Rosati M; Ducoli P; Lombardo G
    J Cataract Refract Surg; 2014 Oct; 40(10):1706-15. PubMed ID: 25263041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corneal light backscattering after transepithelial corneal crosslinking using iontophoresis in donor human corneal tissue.
    Lombardo M; Serrao S; Carbone G; Lombardo G
    J Cataract Refract Surg; 2015 Mar; 41(3):635-43. PubMed ID: 25804584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments.
    Kling S; Remon L; Pérez-Escudero A; Merayo-Lloves J; Marcos S
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3961-8. PubMed ID: 20335615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated versus conventional corneal collagen crosslinking.
    Tomita M; Mita M; Huseynova T
    J Cataract Refract Surg; 2014 Jun; 40(6):1013-20. PubMed ID: 24857442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical efficacy of collagen crosslinking in porcine cornea using a femtosecond laser pocket.
    Wollensak G; Hammer CM; Spörl E; Klenke J; Skerl K; Zhang Y; Sel S
    Cornea; 2014 Mar; 33(3):300-5. PubMed ID: 24457453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin.
    Bikbova G; Bikbov M
    Acta Ophthalmol; 2014 Feb; 92(1):e30-4. PubMed ID: 23848196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical properties of corneal tissue after ultraviolet-A-riboflavin crosslinking.
    Beshtawi IM; O'Donnell C; Radhakrishnan H
    J Cataract Refract Surg; 2013 Mar; 39(3):451-62. PubMed ID: 23506922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially heterogeneous corneal mechanical responses before and after riboflavin-ultraviolet-A crosslinking.
    Palko JR; Tang J; Cruz Perez B; Pan X; Liu J
    J Cataract Refract Surg; 2014 Jun; 40(6):1021-31. PubMed ID: 24751145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of corneal changes after collagen crosslinking using a noninvasive ultrasound system.
    He X; Spoerl E; Tang J; Liu J
    J Cataract Refract Surg; 2010 Jul; 36(7):1207-12. PubMed ID: 20610102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time.
    Lanchares E; del Buey MA; Cristóbal JA; Lavilla L; Calvo B
    Graefes Arch Clin Exp Ophthalmol; 2011 Aug; 249(8):1223-7. PubMed ID: 21494876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal collagen cross-linking combined with simulation of femtosecond laser-assisted refractive lens extraction: an ex vivo biomechanical effect evaluation.
    Kanellopoulos AJ; Kontos MA; Chen S; Asimellis G
    Cornea; 2015 May; 34(5):550-6. PubMed ID: 25651497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased corneal hysteresis after corneal collagen crosslinking: a study based on applanation resonance technology.
    Beckman Rehnman J; Behndig A; Hallberg P; Lindén C
    JAMA Ophthalmol; 2014 Dec; 132(12):1426-32. PubMed ID: 25171564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riboflavin injection into the corneal channel for combined collagen crosslinking and intrastromal corneal ring segment implantation.
    Kılıç A; Kamburoglu G; Akıncı A
    J Cataract Refract Surg; 2012 May; 38(5):878-83. PubMed ID: 22425362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.
    Labate C; Lombardo M; Lombardo G; De Santo MP
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):179-184. PubMed ID: 28114577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the viscoelastic properties of the human cornea using Scheimpflug imaging in inflation experiment of eye globes.
    Lombardo G; Serrao S; Rosati M; Lombardo M
    PLoS One; 2014; 9(11):e112169. PubMed ID: 25397674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of riboflavin-UVA cross-linking and "flash-linking" using surface wave elastometry.
    Rocha KM; Ramos-Esteban JC; Qian Y; Herekar S; Krueger RR
    J Refract Surg; 2008 Sep; 24(7):S748-51. PubMed ID: 18811123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of UVA/Riboflavin Collagen Crosslinking on Biomechanics of Artificially Swollen Corneas.
    Hatami-Marbini H; Jayaram SM
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):764-770. PubMed ID: 29392322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ultraviolet light with the cornea: clinical implications for corneal crosslinking.
    Lombardo M; Pucci G; Barberi R; Lombardo G
    J Cataract Refract Surg; 2015 Feb; 41(2):446-59. PubMed ID: 25542349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Diffusion May Limit the Biomechanical Effectiveness of Iontophoresis-Assisted Transepithelial Corneal Cross-linking.
    Torres-Netto EA; Kling S; Hafezi N; Vinciguerra P; Randleman JB; Hafezi F
    J Refract Surg; 2018 Nov; 34(11):768-774. PubMed ID: 30428097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transepithelial riboflavin/ultraviolet. a corneal cross-linking in keratoconus: morphologic studies on human corneas.
    Mencucci R; Paladini I; Sarchielli E; Favuzza E; Vannelli GB; Marini M
    Am J Ophthalmol; 2013 Nov; 156(5):874-884.e1. PubMed ID: 23972311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.