These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 25263122)
21. Response of biochemical biomarkers in the aquatic crustacean Daphnia magna exposed to silver nanoparticles. Ulm L; Krivohlavek A; Jurašin D; Ljubojević M; Šinko G; Crnković T; Žuntar I; Šikić S; Vinković Vrček I Environ Sci Pollut Res Int; 2015 Dec; 22(24):19990-9. PubMed ID: 26296504 [TBL] [Abstract][Full Text] [Related]
22. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization. Vaishnav RA; Getchell ML; Poon HF; Barnett KR; Hunter SA; Pierce WM; Klein JB; Butterfield DA; Getchell TV J Neurosci Res; 2007 Feb; 85(2):373-85. PubMed ID: 17131389 [TBL] [Abstract][Full Text] [Related]
23. Monitoring genotoxicity in freshwater microcrustaceans: A new application of the micronucleus assay. Barka S; Ouanes Z; Gharbi A; Gdara I; Mouelhi S; Hamza-Chaffai A Mutat Res Genet Toxicol Environ Mutagen; 2016 Jun; 803-804():27-33. PubMed ID: 27265377 [TBL] [Abstract][Full Text] [Related]
24. Metabolomic and oxidative effects of quantum dots-indolicidin on three generations of Daphnia magna. Falanga A; Mercurio FA; Siciliano A; Lombardi L; Galdiero S; Guida M; Libralato G; Leone M; Galdiero E Aquat Toxicol; 2018 May; 198():158-164. PubMed ID: 29547731 [TBL] [Abstract][Full Text] [Related]
25. Mutation of the Cytochrome P450 CYP360A8 Gene Increases Sensitivity to Paraquat in Daphnia magna. Religia P; Nguyen ND; Nong QD; Matsuura T; Kato Y; Watanabe H Environ Toxicol Chem; 2021 May; 40(5):1279-1288. PubMed ID: 33338286 [TBL] [Abstract][Full Text] [Related]
26. Size dependent oxidative stress response of the gut of Daphnia magna to functionalized nanodiamond particles. Domínguez GA; Torelli MD; Buchman JT; Haynes CL; Hamers RJ; Klaper RD Environ Res; 2018 Nov; 167():267-275. PubMed ID: 30077134 [TBL] [Abstract][Full Text] [Related]
27. (1)H NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium. Nagato EG; D'eon JC; Lankadurai BP; Poirier DG; Reiner EJ; Simpson AJ; Simpson MJ Chemosphere; 2013 Sep; 93(2):331-7. PubMed ID: 23732010 [TBL] [Abstract][Full Text] [Related]
28. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna. Pereira CMS; Deruytter D; Blust R; De Schamphelaere KAC Environ Toxicol Chem; 2017 Jul; 36(7):1909-1916. PubMed ID: 27976806 [TBL] [Abstract][Full Text] [Related]
29. Effects of copper pre-exposure routes on the energy reserves and subsequent copper toxicity in Daphnia magna. Canli M Environ Toxicol; 2006 Oct; 21(5):521-7. PubMed ID: 16944514 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of the effect of test medium on total Cu body burden of nano CuO-exposed Daphnia magna: A TXRF spectroscopy study. Muna M; Heinlaan M; Blinova I; Vija H; Kahru A Environ Pollut; 2017 Dec; 231(Pt 2):1488-1496. PubMed ID: 28967571 [TBL] [Abstract][Full Text] [Related]
31. Difference in the sensitivity to chemical compounds between female and male neonates of Daphnia magna. Ikuno E; Matsumoto T; Okubo T; Itoi S; Sugita H Environ Toxicol; 2008 Oct; 23(5):570-5. PubMed ID: 18528912 [TBL] [Abstract][Full Text] [Related]
32. Mass spectrometry and redox proteomics: applications in disease. Butterfield DA; Gu L; Di Domenico F; Robinson RA Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952 [TBL] [Abstract][Full Text] [Related]
33. Ubiquitination and carbonylation of proteins in the clam Ruditapes decussatus, exposed to nonylphenol using redox proteomics. Chora S; McDonagh B; Sheehan D; Starita-Geribaldi M; Roméo M; Bebianno MJ Chemosphere; 2010 Nov; 81(10):1212-7. PubMed ID: 20943247 [TBL] [Abstract][Full Text] [Related]
34. Effects of three diamides (chlorantraniliprole, cyantraniliprole and flubendiamide) on life history, embryonic development and oxidative stress biomarkers of Daphnia magna. Cui F; Chai T; Qian L; Wang C Chemosphere; 2017 Feb; 169():107-116. PubMed ID: 27870931 [TBL] [Abstract][Full Text] [Related]
35. Acclimation to ultraviolet irradiation affects UV-B sensitivity of Daphnia magna to several environmental toxicants. Kim J; Lee M; Oh S; Ku JL; Kim KH; Choi K Chemosphere; 2009 Dec; 77(11):1600-8. PubMed ID: 19836821 [TBL] [Abstract][Full Text] [Related]
36. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu(2+) on biotoxicity in Daphnia magna. Liu L; Fan W; Lu H; Xiao W Sci Rep; 2015 Aug; 5():11121. PubMed ID: 26242603 [TBL] [Abstract][Full Text] [Related]
37. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Hu W; Culloty S; Darmody G; Lynch S; Davenport J; Ramirez-Garcia S; Dawson KA; Lynch I; Blasco J; Sheehan D Chemosphere; 2014 Aug; 108():289-99. PubMed ID: 24582357 [TBL] [Abstract][Full Text] [Related]
38. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Fan W; Cui M; Liu H; Wang C; Shi Z; Tan C; Yang X Environ Pollut; 2011 Mar; 159(3):729-34. PubMed ID: 21177008 [TBL] [Abstract][Full Text] [Related]
39. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna. Tao X; He Y; Fortner JD; Chen Y; Hughes JB Chemosphere; 2013 Aug; 92(9):1245-52. PubMed ID: 23755985 [TBL] [Abstract][Full Text] [Related]
40. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism. Sarwar T; Zafaryab M; Husain MA; Ishqi HM; Rehman SU; Rizvi MM; Tabish M Toxicol Appl Pharmacol; 2015 Dec; 289(2):251-61. PubMed ID: 26415834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]