These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 25263392)

  • 21. Pyrus pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen and tubes in vitro.
    Liu ZQ; Xu GH; Zhang SL
    Protoplasma; 2007; 232(1-2):61-7. PubMed ID: 18094928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Upward organelle motility.
    Baskin TI
    J Integr Plant Biol; 2015 Jan; 57(1):2-3. PubMed ID: 25494628
    [No Abstract]   [Full Text] [Related]  

  • 23. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple.
    Meng D; Gu Z; Yuan H; Wang A; Li W; Yang Q; Zhu Y; Li T
    Plant Cell Physiol; 2014 May; 55(5):977-89. PubMed ID: 24503865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of ROP GTPase Activity and Cytoskeleton Dynamics During Tip Growth in Root Hairs and Pollen Tubes.
    Zhu L; Fu Y
    Methods Mol Biol; 2023; 2604():227-235. PubMed ID: 36773237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles.
    Bou Daher F; Geitmann A
    Traffic; 2011 Nov; 12(11):1537-51. PubMed ID: 21797958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microtubule motors and pollen tube growth--still an open question.
    Cai G; Cresti M
    Protoplasma; 2010 Dec; 247(3-4):131-43. PubMed ID: 20922548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ABP41 is involved in the pollen tube development via fragmenting actin filaments.
    Wang T; Xiang Y; Hou J; Ren HY
    Mol Plant; 2008 Nov; 1(6):1048-55. PubMed ID: 19825602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes.
    Kroeger JH; Daher FB; Grant M; Geitmann A
    Biophys J; 2009 Oct; 97(7):1822-31. PubMed ID: 19804712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth.
    Zhou Z; Shi H; Chen B; Zhang R; Huang S; Fu Y
    Plant Cell; 2015 Apr; 27(4):1140-61. PubMed ID: 25804540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monomeric G-actin is uniformly distributed in pollen tubes and is rapidly redistributed via cytoplasmic streaming during pollen tube growth.
    Chang M; Li Z; Huang S
    Plant J; 2017 Nov; 92(3):509-519. PubMed ID: 28845534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes.
    Cheung AY; Niroomand S; Zou Y; Wu HM
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16390-5. PubMed ID: 20805480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Actin-Based Intracellular Trafficking in Pollen Tubes.
    Jiang Y; Zhang M; Huang S
    Methods Mol Biol; 2017; 1662():125-136. PubMed ID: 28861823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The legacy of kinesins in the pollen tube 30 years later.
    Cai G
    Cytoskeleton (Hoboken); 2022 Jan; 79(1-3):8-19. PubMed ID: 35766009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes.
    Diao M; Li X; Huang S
    Sci China Life Sci; 2020 Feb; 63(2):239-250. PubMed ID: 31240522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth.
    Zhang R; Xu Y; Yi R; Shen J; Huang S
    Plant Physiol; 2023 Aug; 193(1):9-25. PubMed ID: 37002825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube.
    Zhang M; Zhang R; Qu X; Huang S
    J Exp Bot; 2016 May; 67(11):3407-17. PubMed ID: 27117336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and signaling networks for the polar cell growth machinery in pollen tubes.
    Cheung AY; Wu HM
    Annu Rev Plant Biol; 2008; 59():547-72. PubMed ID: 18444907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two Arabidopsis AGC kinases are critical for the polarized growth of pollen tubes.
    Zhang Y; He J; McCormick S
    Plant J; 2009 May; 58(3):474-84. PubMed ID: 19144004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes.
    Parrotta L; Faleri C; Cresti M; Cai G
    Planta; 2016 Jan; 243(1):43-63. PubMed ID: 26335855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. She's the boss: signaling in pollen tube reception.
    Kessler SA; Grossniklaus U
    Curr Opin Plant Biol; 2011 Oct; 14(5):622-7. PubMed ID: 21855398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.