BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25263451)

  • 21. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases.
    Wang Y; Hu J; Wu S; Fleishman JS; Li Y; Xu Y; Zou W; Wang J; Feng Y; Chen J; Wang H
    Signal Transduct Target Ther; 2023 Dec; 8(1):449. PubMed ID: 38072908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent Modifications of RUNX Proteins: Structure Affects Function.
    Blumenthal E; Greenblatt S; Huang G; Ando K; Xu Y; Nimer SD
    Adv Exp Med Biol; 2017; 962():33-44. PubMed ID: 28299649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RUNX1-dependent mechanisms in biological control and dysregulation in cancer.
    Hong D; Fritz AJ; Gordon JA; Tye CE; Boyd JR; Tracy KM; Frietze SE; Carr FE; Nickerson JA; Van Wijnen AJ; Imbalzano AN; Zaidi SK; Lian JB; Stein JL; Stein GS
    J Cell Physiol; 2019 Jun; 234(6):8597-8609. PubMed ID: 30515788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blood malignancies presenting with mutations at equivalent residues in RUNX1-2 suggest a common leukemogenic pathway.
    Callea M; Fattori F; Bertini ES; Cammarata-Scalisi F; Callea F; Bellacchio E
    Leuk Lymphoma; 2017 Aug; 58(8):2002-2004. PubMed ID: 28093006
    [No Abstract]   [Full Text] [Related]  

  • 25. The enigmatic role of RUNX1 in female-related cancers - current knowledge & future perspectives.
    Riggio AI; Blyth K
    FEBS J; 2017 Aug; 284(15):2345-2362. PubMed ID: 28304148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of Runx1 at Ser249, Ser266, and Ser276 is dispensable for bone marrow hematopoiesis and thymocyte differentiation.
    Tachibana M; Tezuka C; Muroi S; Nishimoto S; Katsumoto T; Nakajima A; Kitabayashi I; Taniuchi I
    Biochem Biophys Res Commun; 2008 Apr; 368(3):536-42. PubMed ID: 18261462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1.
    Zhuang M; Gao W; Xu J; Wang P; Shu Y
    Biochem Biophys Res Commun; 2014 Jun; 448(3):315-22. PubMed ID: 24388988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RUNX1 and its understudied role in breast cancer.
    Janes KA
    Cell Cycle; 2011 Oct; 10(20):3461-5. PubMed ID: 22024923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RUNX1 meets MLL: epigenetic regulation of hematopoiesis by two leukemia genes.
    Koh CP; Wang CQ; Ng CE; Ito Y; Araki M; Tergaonkar V; Huang G; Osato M
    Leukemia; 2013 Sep; 27(9):1793-802. PubMed ID: 23817177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple post-translational modifications in hepatocyte nuclear factor 4α.
    Yokoyama A; Katsura S; Ito R; Hashiba W; Sekine H; Fujiki R; Kato S
    Biochem Biophys Res Commun; 2011 Jul; 410(4):749-53. PubMed ID: 21708125
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of Runx1/AML1 and Evi-1 in the regulation of hematopoietic stem cells.
    Kumano K; Kurokawa M
    J Cell Physiol; 2010 Feb; 222(2):282-5. PubMed ID: 19847803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RUNX transcription factors at the interface of stem cells and cancer.
    Deltcheva E; Nimmo R
    Biochem J; 2017 May; 474(11):1755-1768. PubMed ID: 28490659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting post-translational modifications of histones for cancer therapy.
    Hsu YC; Hsieh YH; Liao CC; Chong LW; Lee CY; Yu YL; Chou RH
    Cell Mol Biol (Noisy-le-grand); 2015 Oct; 61(6):69-84. PubMed ID: 26518898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Normal and transforming functions of RUNX1: a perspective.
    Mikhail FM; Sinha KK; Saunthararajah Y; Nucifora G
    J Cell Physiol; 2006 Jun; 207(3):582-93. PubMed ID: 16250015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction.
    Fujimoto T; Anderson K; Jacobsen SE; Nishikawa SI; Nerlov C
    EMBO J; 2007 May; 26(9):2361-70. PubMed ID: 17431401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Core binding factor genes and human leukemia.
    Hart SM; Foroni L
    Haematologica; 2002 Dec; 87(12):1307-23. PubMed ID: 12495904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmentally regulated promoter-switch transcriptionally controls Runx1 function during embryonic hematopoiesis.
    Pozner A; Lotem J; Xiao C; Goldenberg D; Brenner O; Negreanu V; Levanon D; Groner Y
    BMC Dev Biol; 2007 Jul; 7():84. PubMed ID: 17626615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RUNX1 suppression induces megakaryocytic differentiation of UT-7/GM cells.
    Nagai R; Matsuura E; Hoshika Y; Nakata E; Nagura H; Watanabe A; Komatsu N; Okada Y; Doi T
    Biochem Biophys Res Commun; 2006 Jun; 345(1):78-84. PubMed ID: 16674921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia.
    Cheng CK; Chan NP; Wan TS; Lam LY; Cheung CH; Wong TH; Ip RK; Wong RS; Ng MH
    Haematologica; 2016 Apr; 101(4):448-57. PubMed ID: 26802049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia.
    Engel ME; Hiebert SW
    Cancer Treat Res; 2010; 145():127-47. PubMed ID: 20306249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.