These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25263451)

  • 41. CHIP functions an E3 ubiquitin ligase of Runx1.
    Shang Y; Zhao X; Xu X; Xin H; Li X; Zhai Y; He D; Jia B; Chen W; Chang Z
    Biochem Biophys Res Commun; 2009 Aug; 386(1):242-6. PubMed ID: 19524548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Runx1 Structure and Function in Blood Cell Development.
    Bonifer C; Levantini E; Kouskoff V; Lacaud G
    Adv Exp Med Biol; 2017; 962():65-81. PubMed ID: 28299651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RUNX1 as a Novel Molecular Target for Breast Cancer.
    Ariffin NS
    Clin Breast Cancer; 2022 Aug; 22(6):499-506. PubMed ID: 35599145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gatekeeper function of the RUNX1 transcription factor in acute leukemia.
    Niebuhr B; Fischer M; Täger M; Cammenga J; Stocking C
    Blood Cells Mol Dis; 2008; 40(2):211-8. PubMed ID: 17920312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A 5' untranslated region containing the IRES element in the Runx1 gene is required for angiogenesis, hematopoiesis and leukemogenesis in a knock-in mouse model.
    Nagamachi A; Htun PW; Ma F; Miyazaki K; Yamasaki N; Kanno M; Inaba T; Honda Z; Okuda T; Oda H; Tsuji K; Honda H
    Dev Biol; 2010 Sep; 345(2):226-36. PubMed ID: 20647008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RUNX1 and cancer.
    Lin TC
    Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188715. PubMed ID: 35271994
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression status of RUNX1/AML1 in normal gastric epithelium and its mutational analysis in microdissected gastric cancer cells.
    Usui T; Aoyagi K; Saeki N; Nakanishi Y; Kanai Y; Ohki M; Ogawa K; Yoshida T; Sasaki H
    Int J Oncol; 2006 Oct; 29(4):779-84. PubMed ID: 16964375
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region.
    Fowler M; Borazanci E; McGhee L; Pylant SW; Williams BJ; Glass J; Davis JN; Meyers S
    J Cell Biochem; 2006 Jan; 97(1):1-17. PubMed ID: 16237704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lysine-specific post-translational modifications of proteins in the life cycle of viruses.
    Loboda AP; Soond SM; Piacentini M; Barlev NA
    Cell Cycle; 2019 Sep; 18(17):1995-2005. PubMed ID: 31291816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Core binding factor in the early avian embryo: cloning of Cbfbeta and combinatorial expression patterns with Runx1.
    Bollerot K; Romero S; Dunon D; Jaffredo T
    Gene Expr Patterns; 2005 Dec; 6(1):29-39. PubMed ID: 16033710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathological implication of protein post-translational modifications in cancer.
    Pan S; Chen R
    Mol Aspects Med; 2022 Aug; 86():101097. PubMed ID: 35400524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RUNX1-Evi-1 fusion gene inhibited differentiation and apoptosis in myelopoiesis: an in vivo study.
    Shen L; Zhu J; Chen F; Lin W; Cai J; Zhong J; Zhong H
    BMC Cancer; 2015 Dec; 15():970. PubMed ID: 26674644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RUNX1 Dosage in Development and Cancer.
    Lie-A-Ling M; Mevel R; Patel R; Blyth K; Baena E; Kouskoff V; Lacaud G
    Mol Cells; 2020 Feb; 43(2):126-138. PubMed ID: 31991535
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RUNX1: A Regulator of NF-kB Signaling in Pulmonary Diseases.
    Tang X; Sun L; Wang G; Chen B; Luo F
    Curr Protein Pept Sci; 2018; 19(2):172-178. PubMed ID: 28990531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inducing Oncoprotein Degradation to Improve Targeted Cancer Therapy.
    Ray D; Cuneo KC; Rehemtulla A; Lawrence TS; Nyati MK
    Neoplasia; 2015 Sep; 17(9):697-703. PubMed ID: 26476077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alternative translation initiation generates the N-terminal truncated form of RUNX1 that retains hematopoietic activity.
    Goyama S; Schibler J; Mulloy JC
    Exp Hematol; 2019 Apr; 72():27-35. PubMed ID: 30690039
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of protein posttranslational modifications on meat quality: A review.
    Li X; Zhang D; Ren C; Bai Y; Ijaz M; Hou C; Chen L
    Compr Rev Food Sci Food Saf; 2021 Jan; 20(1):289-331. PubMed ID: 33443799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crosstalk of intracellular post-translational modifications in cancer.
    Wu Z; Huang R; Yuan L
    Arch Biochem Biophys; 2019 Nov; 676():108138. PubMed ID: 31606391
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of posttranslational modifications in pancreatic carcinogenesis and treatments.
    Chen N; Zheng Q; Wan G; Guo F; Zeng X; Shi P
    Cancer Metastasis Rev; 2021 Sep; 40(3):739-759. PubMed ID: 34342796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Post-translational modification of SOX family proteins: Key biochemical targets in cancer?
    Williams CAC; Soufi A; Pollard SM
    Semin Cancer Biol; 2020 Dec; 67(Pt 1):30-38. PubMed ID: 31539559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.