These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25263451)

  • 61. RUN(X) out of blood: emerging RUNX1 functions beyond hematopoiesis and links to Down syndrome.
    Rozen EJ; Ozeroff CD; Allen MA
    Hum Genomics; 2023 Sep; 17(1):83. PubMed ID: 37670378
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Targeting post-translational modification of transcription factors as cancer therapy.
    Qian M; Yan F; Yuan T; Yang B; He Q; Zhu H
    Drug Discov Today; 2020 Aug; 25(8):1502-1512. PubMed ID: 32540433
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Posttranslational Modifications of RAS Proteins.
    Ahearn I; Zhou M; Philips MR
    Cold Spring Harb Perspect Med; 2018 Nov; 8(11):. PubMed ID: 29311131
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Posttranslational Modifications of Smurfs: Emerging Regulation in Cancer.
    Yang L; Zhou W; Lin H
    Front Oncol; 2020; 10():610663. PubMed ID: 33718111
    [TBL] [Abstract][Full Text] [Related]  

  • 65. New insights into the role of Runx1 in epithelial stem cell biology and pathology.
    Scheitz CJ; Tumbar T
    J Cell Biochem; 2013 May; 114(5):985-93. PubMed ID: 23150456
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies.
    Wu X; Xu M; Geng M; Chen S; Little PJ; Xu S; Weng J
    Signal Transduct Target Ther; 2023 May; 8(1):220. PubMed ID: 37244925
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tyrosyl phosphorylation toggles a Runx1 switch.
    Neel BG; Speck NA
    Genes Dev; 2012 Jul; 26(14):1520-6. PubMed ID: 22802526
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets.
    Sun M; Ji Y; Zhang G; Li Y; Dong F; Wu T
    Biomed Pharmacother; 2024 Sep; 178():117147. PubMed ID: 39053422
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Posttranslational Modifications of Lipid-Activated Nuclear Receptors: Focus on Metabolism.
    Becares N; Gage MC; Pineda-Torra I
    Endocrinology; 2017 Feb; 158(2):213-225. PubMed ID: 27925773
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Post-Transcriptional and Post-translational Regulation of Central Carbon Metabolic Enzymes in Cancer.
    Wang Y; Chen Y; Fang J
    Anticancer Agents Med Chem; 2017 Nov; 17(11):1456-1465. PubMed ID: 28356004
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues.
    Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y
    Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations.
    Lachowiez C; Bannon S; Loghavi S; Wang F; Kanagal-Shamanna R; Mehta R; Daver N; Borthakur G; Pemmaraju N; Ravandi F; Patel KP; Garcia-Manero G; Takahashi K; Kantarjian H; Bhalla K; DiNardo CD
    Am J Hematol; 2020 Nov; 95(11):E313-E315. PubMed ID: 32804409
    [No Abstract]   [Full Text] [Related]  

  • 73. Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow.
    Brunk E; Chang RL; Xia J; Hefzi H; Yurkovich JT; Kim D; Buckmiller E; Wang HH; Cho BK; Yang C; Palsson BO; Church GM; Lewis NE
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):11096-11101. PubMed ID: 30301795
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications.
    Wang R; Li Y; Ji J; Kong L; Huang Y; Liu Z; Lu L
    Antioxid Redox Signal; 2024 Aug; ():. PubMed ID: 38970420
    [No Abstract]   [Full Text] [Related]  

  • 75. Post-translational modifications of CDK5 and their biological roles in cancer.
    Gao GB; Sun Y; Fang RD; Wang Y; Wang Y; He QY
    Mol Biomed; 2021 Jul; 2(1):22. PubMed ID: 35006426
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Protein Posttranslational Modification in Stemness Remodeling and Its Emerging Role as a Novel Therapeutic Target in Gastrointestinal Cancers.
    Wang Y; Tong M
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298124
    [TBL] [Abstract][Full Text] [Related]  

  • 77. When cancer and immunology meet.
    Carroll M
    Immunol Rev; 2015 Jan; 263(1):2-5. PubMed ID: 25510267
    [No Abstract]   [Full Text] [Related]  

  • 78. Protein Post-translational Modifications in Head and Neck Cancer.
    Zhang H; Han W
    Front Oncol; 2020; 10():571944. PubMed ID: 33117703
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Posttranslational Modifications of Proteins in Cardiovascular Disease.
    Liu YP; Zhang TN; Wen R; Liu CF; Yang N
    Oxid Med Cell Longev; 2022; 2022():3137329. PubMed ID: 35855865
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pharmacological Inhibition of Protein Lipidation.
    Ganesan L; Levental I
    J Membr Biol; 2015 Dec; 248(6):929-41. PubMed ID: 26280397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.