BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25263641)

  • 1. Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the volume phase transition temperature: impact of cross-linking density distribution on the volume phase transition.
    Su W; Zhao K; Wei J; Ngai T
    Soft Matter; 2014 Nov; 10(43):8711-23. PubMed ID: 25263641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous Volume Phase Transition Temperature of Thermosensitive Semi-Interpenetrating Polymer Network Microgel Suspension by Dielectric Spectroscopy.
    Yang M; Zhao K
    J Phys Chem B; 2015 Oct; 119(41):13198-207. PubMed ID: 26401730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the structure on the collapse of poly(N-isopropylacrylamide)-based microgels: an insight by quantitative dielectric analysis.
    Yang M; Zhao K
    Soft Matter; 2016 May; 12(18):4093-102. PubMed ID: 27035253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration dependent phase behavior and collapse dynamics of PNIPAM microgel by dielectric relaxation.
    Yang M; Liu C; Zhao K
    Phys Chem Chem Phys; 2017 Jun; 19(23):15433-15443. PubMed ID: 28580977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxations and phase transitions during the collapse of a dense PNIPAM microgel suspension-thorough insight using dielectric spectroscopy.
    Yang M; Liu C; Lian Y; Zhao K; Zhu D; Zhou J
    Soft Matter; 2017 Apr; 13(14):2663-2676. PubMed ID: 28332691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of temperature-responsive copolymer microgels at the oil/water interface.
    Wu Y; Wiese S; Balaceanu A; Richtering W; Pich A
    Langmuir; 2014 Jul; 30(26):7660-9. PubMed ID: 24926817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(N-isopropylacrylamide) microgels at the oil-water interface: temperature effect.
    Li Z; Richtering W; Ngai T
    Soft Matter; 2014 Sep; 10(33):6182-91. PubMed ID: 25010011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(N-isopropylacrylamide) microgels at the oil-water interface: interfacial properties as a function of temperature.
    Monteux C; Marlière C; Paris P; Pantoustier N; Sanson N; Perrin P
    Langmuir; 2010 Sep; 26(17):13839-46. PubMed ID: 20681739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected cononsolvency behavior of poly (N-isopropylacrylamide)-based microgels.
    Heppner IN; Islam MR; Serpe MJ
    Macromol Rapid Commun; 2013 Nov; 34(21):1708-13. PubMed ID: 24108519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of microgels sensitive toward copper II ions.
    Muratalin M; Luckham PF
    J Colloid Interface Sci; 2013 Apr; 396():1-8. PubMed ID: 23403115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangements in and release from responsive microgel-polyelectrolyte complexes induced by temperature and time.
    Kleinen J; Richtering W
    J Phys Chem B; 2011 Apr; 115(14):3804-10. PubMed ID: 21417490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition behaviors of poly(N-isopropylacrylamide) microgels induced by tannic acid.
    Chen G; Niu CH; Zhou MY; Ju XJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Mar; 343(1):168-75. PubMed ID: 20018293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flocculation behavior of temperature-sensitive poly(N-isopropylacrylamide) microgels containing polar side chains with -OH groups.
    Ma X; Tang X
    J Colloid Interface Sci; 2006 Jul; 299(1):217-24. PubMed ID: 16500668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels.
    Contreras-Cáceres R; Schellkopf L; Fernández-López C; Pastoriza-Santos I; Pérez-Juste J; Stamm M
    Langmuir; 2015 Jan; 31(3):1142-9. PubMed ID: 25526382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(N-isopropylacrylamide-co-hydroxyethylacrylamide) thermosensitive microspheres: the size of microgels dictates the pulsatile release mechanism.
    Fundueanu G; Constantin M; Asmarandei I; Bucatariu S; Harabagiu V; Ascenzi P; Simionescu BC
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):614-23. PubMed ID: 23562533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unperturbed volume transition of thermosensitive poly-(N-isopropylacrylamide) microgel particles embedded in a hydrogel matrix.
    Musch J; Schneider S; Lindner P; Richtering W
    J Phys Chem B; 2008 May; 112(20):6309-14. PubMed ID: 18444673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of concentration and temperature on the dynamic behavior of PAA-g-PEO aqueous solutions with different counterion species: a dielectric spectroscopy study.
    Liu C; Zhao K
    J Phys Chem B; 2012 Jan; 116(2):763-74. PubMed ID: 22145987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(
    Backes S; Krause P; Tabaka W; Witt MU; Mukherji D; Kremer K; von Klitzing R
    ACS Macro Lett; 2017 Oct; 6(10):1042-1046. PubMed ID: 35650939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.