BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25263681)

  • 1. Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments.
    Jelínek F; Gerboni G; Henselmans PW; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Apr; 24(2):77-85. PubMed ID: 25263681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steerable Surgical Instrument for Conventional and Single-Site Minimally Invasive Surgery.
    Hernández-Valderrama VG; Ordorica-Flores RM; Montoya-Alvarez S; Haro-Mendoza D; Ochoa-Toledo L; Lorias-Espinoza D; Ortiz-Simón JL; Pérez-Escamirosa F
    Surg Innov; 2022 Jun; 29(3):449-458. PubMed ID: 34358428
    [No Abstract]   [Full Text] [Related]  

  • 3. Exploring non-assembly 3D printing for novel compliant surgical devices.
    Culmone C; Henselmans PWJ; van Starkenburg RIB; Breedveld P
    PLoS One; 2020; 15(5):e0232952. PubMed ID: 32407397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for minimising rolling joint play in the steerable laparoscopic instrument prototype DragonFlex.
    Jelínek F; Diepens T; Dobbenga S; van der Jagt G; Kreeft D; Smid A; Pessers R; Breedveld P
    Minim Invasive Ther Allied Technol; 2015 Jun; 24(3):181-8. PubMed ID: 25407751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Articulated minimally invasive surgical instrument based on compliant mechanism.
    Arata J; Kogiso S; Sakaguchi M; Nakadate R; Oguri S; Uemura M; Byunghyun C; Akahoshi T; Ikeda T; Hashizume M
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1837-43. PubMed ID: 25698401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a novel tendon-driven manipulator structure based on monolithic compliant rolling-contact joint for minimally invasive surgery.
    Zhang D; Sun Y; Lueth TC
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1615-1625. PubMed ID: 34235629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery.
    Decroly G; Mertens B; Lambert P; Delchambre A
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):333-340. PubMed ID: 31646436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steerable catheters for minimally invasive surgery: a review and future directions.
    Hu X; Chen A; Luo Y; Zhang C; Zhang E
    Comput Assist Surg (Abingdon); 2018 Dec; 23(1):21-41. PubMed ID: 30497292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal invasive ear, nose and throat surgery--advances through modern technologies.
    Plinkert PK; Baumann I
    Otolaryngol Pol; 1997; 51(3):255-85. PubMed ID: 9398924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snake-like surgical forceps for robot-assisted minimally invasive surgery.
    Jin X; Zhao J; Feng M; Hao L; Li Q
    Int J Med Robot; 2018 Aug; 14(4):e1908. PubMed ID: 29570936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges.
    Ali A; Plettenburg DH; Breedveld P
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):679-93. PubMed ID: 26863645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of manual control methods for handheld maneuverable instruments.
    Fan C; Dodou D; Breedveld P
    Minim Invasive Ther Allied Technol; 2013 Jun; 22(3):127-35. PubMed ID: 23106640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Minimally invasive ENT surgery. Progress due to modern technology].
    Plinkert PK; Schurr MO; Kunert W; Flemming E; Buess G; Zenner HP
    HNO; 1996 Jun; 44(6):288-301. PubMed ID: 8767124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, prototype development and pre-clinical validation of a novel instrument with a compliant steerable tip to facilitate endoscopic ear surgery.
    Swarup A; Eastwood KW; Francis P; Chayaopas N; Kahrs LA; Leonard CG; Drake J; James A
    J Med Eng Technol; 2021 Jan; 45(1):22-34. PubMed ID: 33191826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of two cable configurations in 3D printed steerable instruments for minimally invasive surgery.
    Culmone C; van Starkenburg R; Smit G; Breedveld P
    PLoS One; 2022; 17(10):e0275535. PubMed ID: 36194613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of steerable instruments for minimal invasive surgery in modular conception.
    Schurr MO; Melzer A; Dautzenberg P; Neisius B; Trapp R; Buess G
    Acta Chir Belg; 1993; 93(3):73-7. PubMed ID: 8372588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wire-driven flexible manipulator with constrained spherical joints for minimally invasive surgery.
    Ji D; Kang TH; Shim S; Lee S; Hong J
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1365-1377. PubMed ID: 30997634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a multifunctional compliant instrument for minimally invasive surgery.
    Frecker MI; Powell KM; Haluck R
    J Biomech Eng; 2005 Nov; 127(6):990-3. PubMed ID: 16438237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a dexterous robotic surgical instrument with a novel bending mechanism.
    Yang Y; Li J; Kong K; Wang S
    Int J Med Robot; 2022 Feb; 18(1):e2334. PubMed ID: 34551453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.