These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25263710)
41. The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence. Chen Y; Zhu J; Ying SH; Feng MG Appl Microbiol Biotechnol; 2014 Jun; 98(12):5517-29. PubMed ID: 24549768 [TBL] [Abstract][Full Text] [Related]
42. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Fernandes EK; Rangel DE; Moraes AM; Bittencourt VR; Roberts DW J Invertebr Pathol; 2007 Nov; 96(3):237-43. PubMed ID: 17610892 [TBL] [Abstract][Full Text] [Related]
43. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. Zhang J; Wang H; Huang Q; Zhang Y; Zhao L; Liu F; Wang G World J Microbiol Biotechnol; 2020 Jan; 36(1):12. PubMed ID: 31897767 [TBL] [Abstract][Full Text] [Related]
44. Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Martchenko M; Alarco AM; Harcus D; Whiteway M Mol Biol Cell; 2004 Feb; 15(2):456-67. PubMed ID: 14617819 [TBL] [Abstract][Full Text] [Related]
45. Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize: evidence for a Cu-responsive transcription factor. Ruzsa SM; Scandalios JG Biochemistry; 2003 Feb; 42(6):1508-16. PubMed ID: 12578363 [TBL] [Abstract][Full Text] [Related]
46. Modulation of MnSOD protein in response to different experimental stimulation in Hyphantria cunea. Kim YI; Kim HJ; Kwon YM; Kang YJ; Lee IH; Jin BR; Han YS; Cheon HM; Ha NG; Seo SJ Comp Biochem Physiol B Biochem Mol Biol; 2010 Dec; 157(4):343-50. PubMed ID: 20728562 [TBL] [Abstract][Full Text] [Related]
47. Lysyl-tRNA synthetase (Krs) acts a virulence factor of Beauveria bassiana by its vital role in conidial germination and dimorphic transition. Zhu XG; Chu ZJ; Ying SH; Feng MG Fungal Biol; 2017 Nov; 121(11):956-965. PubMed ID: 29029702 [TBL] [Abstract][Full Text] [Related]
48. Cu,Zn superoxide dismutases from Tetrahymena thermophila: molecular evolution and gene expression of the first line of antioxidant defenses. Ferro D; Bakiu R; De Pittà C; Boldrin F; Cattalini F; Pucciarelli S; Miceli C; Santovito G Protist; 2015 Feb; 166(1):131-45. PubMed ID: 25681687 [TBL] [Abstract][Full Text] [Related]
49. C-terminal Ser/Thr residues are vital for the regulatory role of Ste7 in the asexual cycle and virulence of Beauveria bassiana. Wang ZK; Cai Q; Tong SM; Ying SH; Feng MG Appl Microbiol Biotechnol; 2018 Aug; 102(16):6973-6986. PubMed ID: 29948113 [TBL] [Abstract][Full Text] [Related]
50. Bbssk1, a response regulator required for conidiation, multi-stress tolerance, and virulence of Beauveria bassiana. Wang ZL; Li F; Li C; Feng MG Appl Microbiol Biotechnol; 2014 Jun; 98(12):5607-18. PubMed ID: 24633371 [TBL] [Abstract][Full Text] [Related]
51. Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. Shang Y; Duan Z; Huang W; Gao Q; Wang C J Invertebr Pathol; 2012 Jan; 109(1):105-9. PubMed ID: 22024554 [TBL] [Abstract][Full Text] [Related]
52. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. Song TT; Zhao J; Ying SH; Feng MG PLoS One; 2013; 8(4):e62179. PubMed ID: 23596534 [TBL] [Abstract][Full Text] [Related]
53. The transcriptional co-activator multiprotein bridging factor 1 from the fungal insect pathogen, Beauveria bassiana, mediates regulation of hyphal morphogenesis, stress tolerance and virulence. Ying SH; Ji XP; Wang XX; Feng MG; Keyhani NO Environ Microbiol; 2014 Jun; 16(6):1879-97. PubMed ID: 24612420 [TBL] [Abstract][Full Text] [Related]
54. The DUF1996 and WSC domain-containing protein Wsc1I acts as a novel sensor of multiple stress cues in Beauveria bassiana. Tong SM; Wang DY; Gao BJ; Ying SH; Feng MG Cell Microbiol; 2019 Dec; 21(12):e13100. PubMed ID: 31418513 [TBL] [Abstract][Full Text] [Related]
55. Leporipoxvirus Cu-Zn superoxide dismutase homologs inhibit cellular superoxide dismutase, but are not essential for virus replication or virulence. Cao JX; Teoh ML; Moon M; McFadden G; Evans DH Virology; 2002 Apr; 296(1):125-35. PubMed ID: 12036324 [TBL] [Abstract][Full Text] [Related]
56. Superoxide dismutases and their impact upon human health. Johnson F; Giulivi C Mol Aspects Med; 2005; 26(4-5):340-52. PubMed ID: 16099495 [TBL] [Abstract][Full Text] [Related]
57. The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Luo X; Keyhani NO; Yu X; He Z; Luo Z; Pei Y; Zhang Y Fungal Genet Biol; 2012 Jul; 49(7):544-55. PubMed ID: 22587950 [TBL] [Abstract][Full Text] [Related]
58. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Zhang LB; Feng MG Appl Microbiol Biotechnol; 2018 Jun; 102(12):4995-5004. PubMed ID: 29704043 [TBL] [Abstract][Full Text] [Related]
59. A comparison of the structure and function of the highly homologous maize antioxidant Cu/Zn superoxide dismutase genes, Sod4 and Sod4A. Kernodle SP; Scandalios JG Genetics; 1996 Sep; 144(1):317-28. PubMed ID: 8878695 [TBL] [Abstract][Full Text] [Related]
60. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Sansone A; Watson PR; Wallis TS; Langford PR; Kroll JS Microbiology (Reading); 2002 Mar; 148(Pt 3):719-726. PubMed ID: 11882706 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]