BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25263857)

  • 1. Reduction of hypervalent chromium in acidic media by alginic acid.
    Bertoni FA; Bellú SE; González JC; Sala LF
    Carbohydr Polym; 2014 Dec; 114():1-11. PubMed ID: 25263857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.
    Mangiameli MF; González JC; Bellú S; Bertoni F; Sala LF
    Dalton Trans; 2014 Jun; 43(24):9242-54. PubMed ID: 24816781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinic acid and hypervalent chromium: a spectroscopic and kinetic study.
    Mangiameli MF; Bellú S; Pérez Mora B; Sala L; Mamana N
    RSC Adv; 2018 Aug; 8(51):29356-29367. PubMed ID: 35547999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox and complexation chemistry of the Cr(VI)/Cr(V)/Cr(IV)-D-glucuronic acid system.
    González JC; García S; Bellú S; Salas Peregrín JM; Atria AM; Sala LF; Signorella S
    Dalton Trans; 2010 Mar; 39(9):2204-17. PubMed ID: 20162193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights on the mechanism of oxidation of D-galacturonic acid by hypervalent chromium.
    Mangiameli MF; González JC; García SI; Frascaroli MI; Van Doorslaer S; Salas Peregrin JM; Sala LF
    Dalton Trans; 2011 Jul; 40(26):7033-45. PubMed ID: 21629965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of the reduction of CrVI and CrV by D-lactobionic acid.
    Roldán V; Santoro M; González JC; Salas-Peregrin JM; Signorella S; Sala LF
    J Inorg Biochem; 2004 Feb; 98(2):347-57. PubMed ID: 14729315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox and complexation chemistry of the Cr(VI)/Cr(V)-D-galacturonic acid system.
    Gonzalez JC; Daier V; Garcia S; Goodman BA; Atria AM; Sala LF; Signorella S
    Dalton Trans; 2004 Aug; (15):2288-96. PubMed ID: 15278120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution.
    Sun M; Zhang G; Qin Y; Cao M; Liu Y; Li J; Qu J; Liu H
    Environ Sci Technol; 2015 Aug; 49(15):9289-97. PubMed ID: 26154110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct oxidation of guanine and 7,8-dihydro-8-oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for chromate genotoxicity.
    Sugden KD; Campo CK; Martin BD
    Chem Res Toxicol; 2001 Sep; 14(9):1315-22. PubMed ID: 11559048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions.
    Wang Z; Bush RT; Sullivan LA; Liu J
    Environ Sci Technol; 2013 Jun; 47(12):6486-92. PubMed ID: 23692180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes.
    Hu J; Chen C; Zhu X; Wang X
    J Hazard Mater; 2009 Mar; 162(2-3):1542-50. PubMed ID: 18650001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium uptake, retention and reduction in photosynthetic Euglena gracilis.
    García-García JD; Rodríguez-Zavala JS; Jasso-Chávez R; Mendoza-Cozatl D; Moreno-Sánchez R
    Arch Microbiol; 2009 May; 191(5):431-40. PubMed ID: 19290509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of formation and decomposition of hypervalent chromium metabolites in the glutathione-chromium (VI) reaction.
    Moghaddas S; Gelerinter E; Bose RN
    J Inorg Biochem; 1995 Feb; 57(2):135-46. PubMed ID: 7861127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of Chromium(III) triglycine, tetraglycine and pentaglycine complexes.
    Headlam HA; Lay PA
    J Inorg Biochem; 2016 Sep; 162():227-237. PubMed ID: 27365280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics and kinetics of hexavalent chromium reduction by gallic acid in aqueous solutions.
    Chen Z; Zhao Y; Li Q
    Water Sci Technol; 2015; 71(11):1694-700. PubMed ID: 26038935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of hexavalent chromium by H2O2 in acidic solutions.
    Pettine M; Campanella L; Millero FJ
    Environ Sci Technol; 2002 Mar; 36(5):901-7. PubMed ID: 11918015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro.
    Stearns DM; Kennedy LJ; Courtney KD; Giangrande PH; Phieffer LS; Wetterhahn KE
    Biochemistry; 1995 Jan; 34(3):910-9. PubMed ID: 7827049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structures of chromium(VI) complexes with glutathione and model thiols.
    Levina A; Lay PA
    Inorg Chem; 2004 Jan; 43(1):324-35. PubMed ID: 14704084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium(VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics.
    Kim C; Zhou Q; Deng B; Thornton EC; Xu H
    Environ Sci Technol; 2001 Jun; 35(11):2219-25. PubMed ID: 11414022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.