These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 25263880)
1. MDG-1, a polysaccharide from Ophiopogon japonicus, prevents high fat diet-induced obesity and increases energy expenditure in mice. Wang Y; Zhu Y; Ruan K; Wei H; Feng Y Carbohydr Polym; 2014 Dec; 114():183-189. PubMed ID: 25263880 [TBL] [Abstract][Full Text] [Related]
2. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids. Shi L; Wang J; Wang Y; Feng Y Carbohydr Polym; 2016 Oct; 150():74-81. PubMed ID: 27312615 [TBL] [Abstract][Full Text] [Related]
3. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Wang X; Shi L; Wang X; Feng Y; Wang Y Int J Biol Macromol; 2019 Dec; 141():1013-1021. PubMed ID: 31491513 [TBL] [Abstract][Full Text] [Related]
4. MDG-1, an Ophiopogon polysaccharide, regulate gut microbiota in high-fat diet-induced obese C57BL/6 mice. Shi LL; Li Y; Wang Y; Feng Y Int J Biol Macromol; 2015 Nov; 81():576-83. PubMed ID: 26321425 [TBL] [Abstract][Full Text] [Related]
5. [Effect of MDG-1, a polysaccharide from Ophiopogon japonicas, on diversity of lactobacillus in diet-induced obese mice]. Shi LL; Wang Y; Feng Y Zhongguo Zhong Yao Za Zhi; 2015 Feb; 40(4):716-21. PubMed ID: 26137696 [TBL] [Abstract][Full Text] [Related]
6. MDG, an Ophiopogon japonicus polysaccharide, inhibits non-alcoholic fatty liver disease by regulating the abundance of Akkermansia muciniphila. Zhang L; Wang Y; Wu F; Wang X; Feng Y; Wang Y Int J Biol Macromol; 2022 Jan; 196():23-34. PubMed ID: 34920070 [TBL] [Abstract][Full Text] [Related]
7. Hypoglycemic effects of MDG-1, a polysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type 2 diabetes mellitus. Xu J; Wang Y; Xu DS; Ruan KF; Feng Y; Wang S Int J Biol Macromol; 2011 Nov; 49(4):657-62. PubMed ID: 21756932 [TBL] [Abstract][Full Text] [Related]
8. MDG-1, a polysaccharide from Ophiopogon japonicus exerts hypoglycemic effects through the PI3K/Akt pathway in a diabetic KKAy mouse model. Wang LY; Wang Y; Xu DS; Ruan KF; Feng Y; Wang S J Ethnopharmacol; 2012 Aug; 143(1):347-54. PubMed ID: 22776833 [TBL] [Abstract][Full Text] [Related]
9. The novel dipeptidyl peptidase-4 inhibitor teneligliptin prevents high-fat diet-induced obesity accompanied with increased energy expenditure in mice. Fukuda-Tsuru S; Kakimoto T; Utsumi H; Kiuchi S; Ishii S Eur J Pharmacol; 2014 Jan; 723():207-15. PubMed ID: 24309217 [TBL] [Abstract][Full Text] [Related]
10. MDG-1, a Potential Regulator of PPARα and PPARγ, Ameliorates Dyslipidemia in Mice. Wang X; Shi L; Joyce S; Wang Y; Feng Y Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28885549 [TBL] [Abstract][Full Text] [Related]
11. [Isolation, purification and structural analysis of a polysaccharide MDG-1 from Ophiopogon japonicus]. Xu DS; Feng Y; Lin X; Deng HL; Fang JN; Dong Q Yao Xue Xue Bao; 2005 Jul; 40(7):636-9. PubMed ID: 16196271 [TBL] [Abstract][Full Text] [Related]
12. Long-Term Dietary Supplementation with Yerba Mate Ameliorates Diet-Induced Obesity and Metabolic Disorders in Mice by Regulating Energy Expenditure and Lipid Metabolism. Choi MS; Park HJ; Kim SR; Kim DY; Jung UJ J Med Food; 2017 Dec; 20(12):1168-1175. PubMed ID: 28872427 [TBL] [Abstract][Full Text] [Related]
13. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spectrometry (GC TOF/MS). Zhu Y; Cong W; Shen L; Wei H; Wang Y; Wang L; Ruan K; Wu F; Feng Y Mol Biosyst; 2014 Feb; 10(2):304-12. PubMed ID: 24292023 [TBL] [Abstract][Full Text] [Related]
14. Andrographolide prevents high-fat diet-induced obesity in C57BL/6 mice by suppressing the sterol regulatory element-binding protein pathway. Ding L; Li J; Song B; Xiao X; Huang W; Zhang B; Tang X; Qi M; Yang Q; Yang Q; Yang L; Wang Z J Pharmacol Exp Ther; 2014 Nov; 351(2):474-83. PubMed ID: 25204338 [TBL] [Abstract][Full Text] [Related]
15. Lee DH; Ahn J; Jang YJ; Seo HD; Ha TY; Kim MJ; Huh YH; Jung CH Nutrients; 2020 Feb; 12(2):. PubMed ID: 32046183 [No Abstract] [Full Text] [Related]
16. Cinnamomum cassia Prevents High-Fat Diet-Induced Obesity in Mice through the Increase of Muscle Energy. Song MY; Kang SY; Kang A; Hwang JH; Park YK; Jung HW Am J Chin Med; 2017; 45(5):1017-1031. PubMed ID: 28659036 [TBL] [Abstract][Full Text] [Related]
17. Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Binder E; Bermúdez-Silva FJ; Elie M; Leste-Lasserre T; Belluomo I; Clark S; Duchampt A; Mithieux G; Cota D Obesity (Silver Spring); 2014 Mar; 22(3):713-20. PubMed ID: 23894080 [TBL] [Abstract][Full Text] [Related]
18. Oxyresveratrol Increases Energy Expenditure through Foxo3a-Mediated Ucp1 Induction in High-Fat-Diet-Induced Obese Mice. Choi JH; Song NJ; Lee AR; Lee DH; Seo MJ; Kim S; Chang SH; Yang DK; Hwang YJ; Hwang KA; Ha TS; Yun UJ; Park KW Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30577593 [TBL] [Abstract][Full Text] [Related]
19. Anti-Obesity Properties of the Dietary Green Alga, Codium cylindricum, in High-Fat Diet-Induced Obese Mice. Li ZS; Zheng JW; Manabe Y; Hirata T; Sugawara T J Nutr Sci Vitaminol (Tokyo); 2018; 64(5):347-356. PubMed ID: 30381625 [TBL] [Abstract][Full Text] [Related]
20. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Liu C; Guo Y; Sun L; Lai X; Li Q; Zhang W; Xiang L; Sun S; Cao F Food Funct; 2019 Apr; 10(4):2061-2074. PubMed ID: 30907897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]