BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25263899)

  • 1. Thermal stability of cellulose and their nanoparticles: effect of incremental increases in carboxyl and aldehyde groups.
    Sharma PR; Varma AJ
    Carbohydr Polym; 2014 Dec; 114():339-343. PubMed ID: 25263899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized celluloses and their nanoparticles: morphology, thermal properties, and solubility studies.
    Sharma PR; Varma AJ
    Carbohydr Polym; 2014 Apr; 104():135-42. PubMed ID: 24607170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.
    Sheikhi A; Yang H; Alam MN; van de Ven TG
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Direct Silanization Protocol for Dialdehyde Cellulose.
    Lucia A; Bacher M; van Herwijnen HWG; Rosenau T
    Molecules; 2020 May; 25(10):. PubMed ID: 32466232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.
    Baniasad A; Ghorbani M
    Int J Biol Macromol; 2016 May; 86():901-6. PubMed ID: 26893046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-crystalline cellulose-coated magnetic nanoparticles for affinity adsorption of glycoproteins.
    Zhang J; Feng X; Wang J; Fang G; Liu J; Wang S
    Analyst; 2020 May; 145(9):3407-3413. PubMed ID: 32253403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges.
    Lin N; Bruzzese C; Dufresne A
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4948-59. PubMed ID: 22950801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents.
    Kim UJ; Lee YR; Kang TH; Choi JW; Kimura S; Wada M
    Carbohydr Polym; 2017 May; 163():34-42. PubMed ID: 28267516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formaldehyde formation during the preparation of dialdehyde carboxymethyl cellulose tanning agent.
    Yi Y; Jiang Z; Yang S; Ding W; Wang YN; Shi B
    Carbohydr Polym; 2020 Jul; 239():116217. PubMed ID: 32414428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Ion-Exchanged TEMPO-Oxidized Celluloses as Flame Retardant Products.
    Geng C; Zhao Z; Xue Z; Xu P; Xia Y
    Molecules; 2019 May; 24(10):. PubMed ID: 31117205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive Amination of Dialdehyde Cellulose: Access to Renewable Thermoplastics.
    Simon J; Fliri L; Sapkota J; Ristolainen M; Miller SA; Hummel M; Rosenau T; Potthast A
    Biomacromolecules; 2023 Jan; 24(1):166-177. PubMed ID: 36542819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods.
    Zhang K; Sun P; Liu H; Shang S; Song J; Wang D
    Carbohydr Polym; 2016 Mar; 138():237-43. PubMed ID: 26794758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Films prepared from electrosterically stabilized nanocrystalline cellulose.
    Yang H; Tejado A; Alam N; Antal M; van de Ven TG
    Langmuir; 2012 May; 28(20):7834-42. PubMed ID: 22482733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of cellulose nanocrystals based on waste paper via different systems.
    Jiang Q; Xing X; Jing Y; Han Y
    Int J Biol Macromol; 2020 Apr; 149():1318-1322. PubMed ID: 32061703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy.
    Simon J; Tsetsgee O; Iqbal NA; Sapkota J; Ristolainen M; Rosenau T; Potthast A
    Carbohydr Polym; 2022 Feb; 278():118887. PubMed ID: 34973725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of HNO3/H3PO4-NANO2 mediated oxidation on the structure and properties of cellulose fibers.
    Xu Y; Liu X; Liu X; Tan J; Zhu H
    Carbohydr Polym; 2014 Oct; 111():955-63. PubMed ID: 25037436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release.
    Peng X; Liu P; Pang B; Yao Y; Wang J; Zhang K
    Carbohydr Polym; 2019 Jul; 216():113-118. PubMed ID: 31047047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse.
    El Achaby M; El Miri N; Aboulkas A; Zahouily M; Bilal E; Barakat A; Solhy A
    Int J Biol Macromol; 2017 Mar; 96():340-352. PubMed ID: 27988293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP/MAS NMR spectroscopy.
    Kumar V; Yang T
    Int J Pharm; 1999 Jul; 184(2):219-26. PubMed ID: 10387951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.
    Mhd Haniffa MAC; Ching YC; Chuah CH; Yong Ching K; Nazri N; Abdullah LC; Nai-Shang L
    Carbohydr Polym; 2017 Oct; 173():91-99. PubMed ID: 28732923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.