These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25264267)
1. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou׳s general PseAAC. Dehzangi A; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A J Theor Biol; 2015 Jan; 364():284-94. PubMed ID: 25264267 [TBL] [Abstract][Full Text] [Related]
2. Gram-positive and Gram-negative subcellular localization using rotation forest and physicochemical-based features. Dehzangi A; Sohrabi S; Heffernan R; Sharma A; Lyons J; Paliwal K; Sattar A BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S1. PubMed ID: 25734546 [TBL] [Abstract][Full Text] [Related]
3. EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. Uddin MR; Sharma A; Farid DM; Rahman MM; Dehzangi A; Shatabda S J Theor Biol; 2018 Apr; 443():138-146. PubMed ID: 29421211 [TBL] [Abstract][Full Text] [Related]
4. Predict Gram-Positive and Gram-Negative Subcellular Localization via Incorporating Evolutionary Information and Physicochemical Features Into Chou's General PseAAC. Sharma R; Dehzangi A; Lyons J; Paliwal K; Tsunoda T; Sharma A IEEE Trans Nanobioscience; 2015 Dec; 14(8):915-26. PubMed ID: 26584499 [TBL] [Abstract][Full Text] [Related]
5. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Li L; Yu S; Xiao W; Li Y; Li M; Huang L; Zheng X; Zhou S; Yang H Biochimie; 2014 Sep; 104():100-7. PubMed ID: 24929100 [TBL] [Abstract][Full Text] [Related]
6. Prediction of protein subcellular localization. Yu CS; Chen YC; Lu CH; Hwang JK Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418 [TBL] [Abstract][Full Text] [Related]
7. Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. Wang J; Sung WK; Krishnan A; Li KB BMC Bioinformatics; 2005 Jul; 6():174. PubMed ID: 16011808 [TBL] [Abstract][Full Text] [Related]
8. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model. Saini H; Raicar G; Dehzangi A; Lal S; Sharma A J Theor Biol; 2015 Dec; 386():25-33. PubMed ID: 26386142 [TBL] [Abstract][Full Text] [Related]
9. Protein subcellular localization prediction based on compartment-specific biological features. Su CY; Lo A; Chiu HS; Sung TY; Hsu WL Comput Syst Bioinformatics Conf; 2006; ():325-30. PubMed ID: 17369650 [TBL] [Abstract][Full Text] [Related]
10. Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Shen HB; Chou KC Protein Eng Des Sel; 2007 Jan; 20(1):39-46. PubMed ID: 17244638 [TBL] [Abstract][Full Text] [Related]
11. Ranking Gene Ontology terms for predicting non-classical secretory proteins in eukaryotes and prokaryotes. Huang WL J Theor Biol; 2012 Nov; 312():105-13. PubMed ID: 22967952 [TBL] [Abstract][Full Text] [Related]
12. Feature extraction by statistical contact potentials and wavelet transform for predicting subcellular localizations in gram negative bacterial proteins. Arango-Argoty GA; Jaramillo-Garzón JA; Castellanos-Domínguez G J Theor Biol; 2015 Jan; 364():121-30. PubMed ID: 25219623 [TBL] [Abstract][Full Text] [Related]
13. CE-PLoc: an ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition. Khan A; Majid A; Hayat M Comput Biol Chem; 2011 Aug; 35(4):218-29. PubMed ID: 21864791 [TBL] [Abstract][Full Text] [Related]
14. Feature Fusion Based SVM Classifier for Protein Subcellular Localization Prediction. Rahman J; Mondal MN; Islam MK; Hasan MA J Integr Bioinform; 2016 Dec; 13(1):288. PubMed ID: 28187424 [TBL] [Abstract][Full Text] [Related]
15. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment. Bouziane H; Chouarfia A J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314 [TBL] [Abstract][Full Text] [Related]
16. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates. Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712 [TBL] [Abstract][Full Text] [Related]
17. A multiple information fusion method for predicting subcellular locations of two different types of bacterial protein simultaneously. Chen J; Xu H; He PA; Dai Q; Yao Y Biosystems; 2016 Jan; 139():37-45. PubMed ID: 26724384 [TBL] [Abstract][Full Text] [Related]
18. ProLoc: prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. Huang WL; Tung CW; Huang HL; Hwang SF; Ho SY Biosystems; 2007; 90(2):573-81. PubMed ID: 17291684 [TBL] [Abstract][Full Text] [Related]
19. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble. Wang X; Zhang J; Li GZ BMC Bioinformatics; 2015; 16 Suppl 12(Suppl 12):S1. PubMed ID: 26329681 [TBL] [Abstract][Full Text] [Related]
20. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Yu CS; Lin CJ; Hwang JK Protein Sci; 2004 May; 13(5):1402-6. PubMed ID: 15096640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]