These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25264567)

  • 1. Molecular spintronics: destructive quantum interference controlled by a gate.
    Saraiva-Souza A; Smeu M; Zhang L; Souza Filho AG; Guo H; Ratner MA
    J Am Chem Soc; 2014 Oct; 136(42):15065-71. PubMed ID: 25264567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.
    Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF
    J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Negative Differential Resistance and Rectification from a Donor-σ-Acceptor Molecule in the Presence of Dissimilar Electrodes.
    Koley S; Chakrabarti S
    Chemistry; 2018 Apr; 24(22):5876-5882. PubMed ID: 29460376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-phthalocyanine molecular junction with high spin filter efficiency and negative differential resistance.
    Huang J; Xu K; Lei S; Su H; Yang S; Li Q; Yang J
    J Chem Phys; 2012 Feb; 136(6):064707. PubMed ID: 22360215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong current polarization and perfect negative differential resistance in few-FeN
    Li XF; Liu L; Yan Q; Li QK; Wang Y; Deng M; Qiu Q
    Phys Chem Chem Phys; 2017 Jan; 19(4):2674-2678. PubMed ID: 28067932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfect spin filtering effect and negative differential behavior in phosphorus-doped zigzag graphene nanoribbons.
    Zou F; Zhu L; Yao K
    Sci Rep; 2015 Oct; 5():15966. PubMed ID: 26514646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon.
    Kang D; Wang B; Xia C; Li H
    Nanoscale Res Lett; 2017 Dec; 12(1):357. PubMed ID: 28525951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The spin-dependent transport properties of defected zigzag graphene nanoribbons with graphene nanobubbles.
    Ni Y; Li J; Tao W; Ding H; Li RX
    Phys Chem Chem Phys; 2021 Feb; 23(4):2753-2761. PubMed ID: 33471019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.
    Tang GP; Zhang ZH; Deng XQ; Fan ZQ; Zhu HL
    Phys Chem Chem Phys; 2015 Jan; 17(1):638-43. PubMed ID: 25407715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters.
    Magno M; Hagelberg F
    J Mol Model; 2018 Jan; 24(1):35. PubMed ID: 29313152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anchoring effect on the spin transport properties and I-V characteristics of pentacene molecular devices suspended between nickel electrodes.
    Caliskan S; Laref A
    Phys Chem Chem Phys; 2014 Jul; 16(26):13191-208. PubMed ID: 24870063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative differential resistance in oxidized zigzag graphene nanoribbons.
    Wang M; Li CM
    Phys Chem Chem Phys; 2011 Jan; 13(4):1413-8. PubMed ID: 21152514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin-filtering, giant magnetoresistance, rectifying and negative differential resistance effects in planar four-coordinate Fe complex with graphene nanoribbon electrodes.
    Zhao P; Wu QH; Liu DS; Chen G
    J Chem Phys; 2014 Jan; 140(4):044311. PubMed ID: 25669527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field.
    Ilyasov VV; Meshi BC; Nguyen VC; Ershov IV; Nguyen DC
    J Chem Phys; 2014 Jul; 141(1):014708. PubMed ID: 25005304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin transport in be edge-doped graphene nanoribbon.
    Wu TT; Wang XF; Jiang Y; Zhou L
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6467-71. PubMed ID: 22962766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin currents and filtering behavior in zigzag graphene nanoribbons with adsorbed molybdenum chains.
    García-Fuente A; Gallego LJ; Vega A
    J Phys Condens Matter; 2015 Apr; 27(13):135301. PubMed ID: 25765052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin transport properties in lower n-acene-graphene nanojunctions.
    Zou D; Cui B; Kong X; Zhao W; Zhao J; Liu D
    Phys Chem Chem Phys; 2015 May; 17(17):11292-300. PubMed ID: 25835485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.