These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 25264567)

  • 21. Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit)2.
    Su Z; An Y; Wei X; Yang Z
    J Chem Phys; 2014 May; 140(20):204707. PubMed ID: 24880311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach.
    Zhang GP; Liu X; Wang CZ; Yao YX; Zhang J; Ho KM
    J Phys Condens Matter; 2013 Mar; 25(10):105302. PubMed ID: 23399804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spin-polarized electrical transport properties of organic radicals in presence of zigzag-graphene nanoribbon leads.
    Sarkar S; Kumar A; Cho D
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38265086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lower Electric Field-Driven Magnetic Phase Transition and Perfect Spin Filtering in Graphene Nanoribbons by Edge Functionalization.
    Rezapour MR; Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Dec; 7(24):5049-5055. PubMed ID: 27973868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin-dependent electronic conduction along zigzag graphene nanoribbons bearing adsorbed Ni and Fe nanostructures.
    García-Fuente A; Gallego LJ; Vega A
    J Phys Condens Matter; 2014 Apr; 26(16):165302. PubMed ID: 24691196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal spin filtering, thermal spin switching and negative-differential-resistance in thermal spin currents in zigzag SiC nanoribbons.
    Wu DD; Fu HH; Gu L; Ni Y; Zu FX; Yao KL
    Phys Chem Chem Phys; 2014 Sep; 16(33):17493-8. PubMed ID: 25019693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons.
    Zhu L; Li R; Yao K
    Phys Chem Chem Phys; 2017 Feb; 19(5):4085-4092. PubMed ID: 28111668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bipolar spin-filtering and giant magnetoresistance effect in spin-semiconducting zigzag graphene nanoribbons.
    Han Z; Hao H; Zheng X; Zeng Z
    Phys Chem Chem Phys; 2023 Feb; 25(8):6461-6466. PubMed ID: 36779977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Voltage-driven spintronic logic gates in graphene nanoribbons.
    Zhang W
    Sci Rep; 2014 Sep; 4():6320. PubMed ID: 25204808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-Polarized Electron Transport Across Metal-Organic Molecules: A Density Functional Theory Approach.
    Bagrets A
    J Chem Theory Comput; 2013 Jun; 9(6):2801-15. PubMed ID: 26583870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient spin filter based on FeN4 complexes between carbon nanotube electrodes.
    Huang J; Wang W; Yang S; Li Q; Yang J
    Nanotechnology; 2012 Jun; 23(25):255202. PubMed ID: 22652524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic electronic and transport properties of graphene nanoribbons with different widths.
    Zhang L; Zhao J; Cheng N; Chen Z
    Phys Chem Chem Phys; 2020 Feb; 22(6):3584-3591. PubMed ID: 31995075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons.
    Zhou Y; Zheng X
    J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large spin-filtering effect in Ti-doped defective zigzag graphene nanoribbon.
    Tawfik SA; Cui XY; Ringer SP; Stampfl C
    Phys Chem Chem Phys; 2016 Jun; 18(24):16224-8. PubMed ID: 27252042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disorder-based graphene spintronics.
    Rocha AR; Martins TB; Fazzio A; da Silva AJ
    Nanotechnology; 2010 Aug; 21(34):345202. PubMed ID: 20671366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.
    Yun J; Lee G; Kim KS
    J Phys Chem Lett; 2016 Jul; 7(13):2478-82. PubMed ID: 27299184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical studies of electron transport in thiophene dimer: effects of substituent group and heteroatom.
    Yuan S; Dai C; Weng J; Mei Q; Ling Q; Wang L; Huang W
    J Phys Chem A; 2011 May; 115(17):4535-46. PubMed ID: 21466192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. sigma- and pi-defects at graphene nanoribbon edges: building spin filters.
    Martins TB; da Silva AJ; Miwa RH; Fazzio A
    Nano Lett; 2008 Aug; 8(8):2293-8. PubMed ID: 18646830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.