These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25264802)

  • 1. [Technological advances in neurorehabilitation].
    Gutiérrez-Martínez J; Núñez-Gaona MA; Carrillo-Mora P
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S8-23. PubMed ID: 25264802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation.
    Pellegrino G; Tomasevic L; Tombini M; Assenza G; Bravi M; Sterzi S; Giacobbe V; Zollo L; Guglielmelli E; Cavallo G; Vernieri F; Tecchio F
    Restor Neurol Neurosci; 2012; 30(6):497-510. PubMed ID: 22868224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.
    O'Malley MK; Ro T; Levin HS
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S59-66. PubMed ID: 17140881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Contributions of robotic devices to upper limb poststroke rehabilitation].
    Duret C
    Rev Neurol (Paris); 2010 May; 166(5):486-93. PubMed ID: 19942243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional electrical stimulation-induced neural changes and recovery after stroke.
    Weingarden H; Ring H
    Eura Medicophys; 2006 Jun; 42(2):87-90. PubMed ID: 16767055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approaches to neurorehabilitiation: the increasing evidence base.
    Sandin KJ
    Minn Med; 2012 Jan; 95(1):46-8. PubMed ID: 22355913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor learning: its relevance to stroke recovery and neurorehabilitation.
    Krakauer JW
    Curr Opin Neurol; 2006 Feb; 19(1):84-90. PubMed ID: 16415682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach.
    Calabrò RS; Naro A; Russo M; Leo A; Balletta T; Saccá I; De Luca R; Bramanti P
    Restor Neurol Neurosci; 2015; 33(5):671-81. PubMed ID: 26410207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automating activity-based interventions: the role of robotics.
    Hidler J; Hamm LF; Lichy A; Groah SL
    J Rehabil Res Dev; 2008; 45(2):337-44. PubMed ID: 18566951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted Therapy for the Upper Limb after Cervical Spinal Cord Injury.
    Yozbatiran N; Francisco GE
    Phys Med Rehabil Clin N Am; 2019 May; 30(2):367-384. PubMed ID: 30954153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The place of robotics in post-stroke rehabilitation.
    Rosati G
    Expert Rev Med Devices; 2010 Nov; 7(6):753-8. PubMed ID: 21050086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains?
    Dobkin BH
    Curr Opin Neurol; 2003 Dec; 16(6):685-91. PubMed ID: 14624077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroplasticity and its applications for rehabilitation.
    Young JA; Tolentino M
    Am J Ther; 2011 Jan; 18(1):70-80. PubMed ID: 21192249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular electrical stimulation in neurorehabilitation.
    Sheffler LR; Chae J
    Muscle Nerve; 2007 May; 35(5):562-90. PubMed ID: 17299744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal plasticity in robot-mediated therapy for the lower limbs.
    Stevenson AJ; Mrachacz-Kersting N; van Asseldonk E; Turner DL; Spaich EG
    J Neuroeng Rehabil; 2015 Sep; 12():81. PubMed ID: 26377324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.