These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 2526485)

  • 1. Involvement of prostaglandins in arteriolar vasodilation to peroxides.
    Wolin MS; Messina EJ; Kaley G
    Adv Prostaglandin Thromboxane Leukot Res; 1989; 19():281-4. PubMed ID: 2526485
    [No Abstract]   [Full Text] [Related]  

  • 2. Prostaglandins mediate arteriolar dilation to increased blood flow velocity in skeletal muscle microcirculation.
    Koller A; Kaley G
    Circ Res; 1990 Aug; 67(2):529-34. PubMed ID: 2115825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle.
    Messina EJ; Sun D; Koller A; Wolin MS; Kaley G
    Circ Res; 1992 Oct; 71(4):790-6. PubMed ID: 1516156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new role for prostaglandins in the regulation of peripheral resistance.
    Koller A; Kaley G
    Adv Prostaglandin Thromboxane Leukot Res; 1991; 21B():595-8. PubMed ID: 1825383
    [No Abstract]   [Full Text] [Related]  

  • 5. Endothelium-dependent, shear-induced vasodilation is rate-sensitive.
    Butler PJ; Weinbaum S; Chien S; Lemons DE
    Microcirculation; 2000 Feb; 7(1):53-65. PubMed ID: 10708337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxygen tension on flow-induced vasodilation in porcine coronary resistance arterioles.
    Jimenez AH; Tanner MA; Caldwell WM; Myers PR
    Microvasc Res; 1996 May; 51(3):365-77. PubMed ID: 8992234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostaglandin-nitric oxide interactions in the microcirculation.
    Kaley G; Koller A
    Adv Prostaglandin Thromboxane Leukot Res; 1995; 23():485-90. PubMed ID: 7537439
    [No Abstract]   [Full Text] [Related]  

  • 8. Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle.
    Faber JE; Harris PD; Joshua IG
    Am J Physiol; 1982 Jul; 243(1):H51-60. PubMed ID: 7091379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impaired endothelium-dependent relaxation in two-kidney, one clip Goldblatt hypertension: effect of vasoconstrictor prostanoids.
    Bennett MA; Watt PA; Thurston H
    J Hypertens Suppl; 1993 Dec; 11(5):S134-5. PubMed ID: 8158312
    [No Abstract]   [Full Text] [Related]  

  • 10. Macrophage-induced nitric oxide and prostanoid dependent relaxation of arterial smooth muscles.
    Wang H; Mizuno R; Ohhashi T
    Can J Physiol Pharmacol; 1997 Jul; 75(7):789-95. PubMed ID: 9315345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic N omega-hydroxy-L-arginine causes endothelium-dependent vascular relaxation both in vitro and in vivo.
    Sakamaki T; Sato K; Mochida M; Saito Y; Oyama Y; Nagai R; Ikeno M; Ishikawa T
    J Smooth Muscle Res; 1995 Dec; 31(6):439-43. PubMed ID: 8867964
    [No Abstract]   [Full Text] [Related]  

  • 12. Calcitonin gene-related peptide relaxes porcine arteries via one endothelium-dependent and one endothelium-independent mechanism.
    Samuelson UE; Jernbeck J
    Acta Physiol Scand; 1991 Feb; 141(2):281-2. PubMed ID: 2048412
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of endothelium removal on prostaglandin and nitric oxide function in pulmonary resistance arteries in the lamb.
    Theis JG; Toyoda O; Coceani F
    Can J Physiol Pharmacol; 1998 Feb; 76(2):182-7. PubMed ID: 9635158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Primary nitrate tolerance in diabetes mellitus.
    McVeigh G; Brennan G; Hayes R; Johnston D
    Diabetologia; 1994 Jan; 37(1):115-7. PubMed ID: 8150224
    [No Abstract]   [Full Text] [Related]  

  • 16. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelium-dependent and -independent relaxation in the forelimb and hindlimb vasculatures of swine.
    Newcomer SC; Taylor JC; Bowles DK; Laughlin MH
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):292-300. PubMed ID: 17544306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide and prostaglandin systems in lithium modulation of acetylcholine vasodilation.
    Rahimzadeh-Rofouyi B; Afsharimani B; Moezi L; Ebrahimi F; Mehr SE; Mombeini T; Ghahremani MH; Dehpour AR
    J Cardiovasc Pharmacol; 2007 Dec; 50(6):641-6. PubMed ID: 18091580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of prostaglandins and histamine in reactive hyperemia: in-vivo studies on single mesenteric arterioles.
    Altura BM
    Prostaglandins Med; 1978 Oct; 1(4):323-31. PubMed ID: 102004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of oxidant stress and vascular reactivity.
    Gurtner GH; Burke-Wolin T
    Am J Physiol; 1991 Apr; 260(4 Pt 1):L207-11. PubMed ID: 2018144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.