These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25264942)

  • 1. Molecular dynamics study of surfactant-like peptide based nanostructures.
    Colherinhas G; Fileti E
    J Phys Chem B; 2014 Oct; 118(42):12215-22. PubMed ID: 25264942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study.
    Sun Y; Qian Z; Guo C; Wei G
    Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polypeptide A9K at nanoscale carbon: a simulation study.
    Chaban VV; Arruda A; Fileti EE
    Phys Chem Chem Phys; 2015 Oct; 17(39):26386-93. PubMed ID: 26387691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing new surfactant peptides for binding to carbon nanotubes via computational approaches.
    Mansouri A; Mahnam K
    J Mol Graph Model; 2017 Jun; 74():61-72. PubMed ID: 28359959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers.
    Lee OS; Stupp SI; Schatz GC
    J Am Chem Soc; 2011 Mar; 133(10):3677-83. PubMed ID: 21341770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-mechanical stability and strength of peptide nanostructures from molecular dynamics: self-assembled cyclic peptide nanotubes.
    Diaz JA; Cağin T
    Nanotechnology; 2010 Mar; 21(11):115703. PubMed ID: 20173235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces.
    Chiu CC; Dieckmann GR; Nielsen SO
    J Phys Chem B; 2008 Dec; 112(51):16326-33. PubMed ID: 19049390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides.
    Xie H; Becraft EJ; Baughman RH; Dalton AB; Dieckmann GR
    J Pept Sci; 2008 Feb; 14(2):139-51. PubMed ID: 18098328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicanonical ab inito QM/MM molecular dynamics simulation of a peptide in an aqueous environment.
    Jono R; Watanabe Y; Shimizu K; Terada T
    J Comput Chem; 2010 Apr; 31(6):1168-75. PubMed ID: 19847783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Kang M; Chakraborty K; Loverde SM
    J Chem Inf Model; 2018 Jun; 58(6):1164-1168. PubMed ID: 29856610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect and hierarchical nanostructure formation in mixing two designer lipid-like peptide surfactants Ac-A6D-OH and Ac-A6K-NH2.
    Khoe U; Yang Y; Zhang S
    Macromol Biosci; 2008 Nov; 8(11):1060-7. PubMed ID: 18814319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of channel function due to physical energetic coupling with a lipid bilayer.
    Ashrafuzzaman M; Tseng CY; Tuszynski JA
    Biochem Biophys Res Commun; 2014 Mar; 445(2):463-8. PubMed ID: 24530910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative studies on the self-assembling behaviors of cationic and catanionic surfactant-like peptides.
    Qiu F; Chen Y; Zhao X
    J Colloid Interface Sci; 2009 Aug; 336(2):477-84. PubMed ID: 19447403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of molecular materials using peptide construction motifs.
    Zhao X; Zhang S
    Trends Biotechnol; 2004 Sep; 22(9):470-6. PubMed ID: 15331228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.